Homework 1, due: 01/27

1. Write down the pseudo code to compute the product of the transpose sparse matrix in CSR format with a vector:

$$
y=A^{\prime} \cdot x
$$

Do not use the naive way by searching for all non-zero entries in column i.
2. Take the "01_sparse_mat" source code from the class repo and implement your pseudo code in 1).
3. Create the directed graph for the 1 d finite difference boundary values problem:

$$
\left(\begin{array}{cccc}
2 & -1 & & \\
-1 & 2 & -1 & \\
& \ddots & \ddots & \ddots \\
& & -1 & 2
\end{array}\right)
$$

for $n=5$ and proceed to eliminate the second and fourth column (above and below the diagonal). Draw the final graph.
4. Let A be a symmetric matrix, $L L^{T}=A$ the Cholesky decomposition, and $G(A)$ the undirected graph of A. Show: $(i, j) \in G\left(L+L^{T}\right)$ if and only if there exists a path from i to j in $G(A)$ with all nodes (except i and j) have number smaller than $\min (i, j)$.
5. Assume you have a regular finite element mesh based on quads in dimension $d=2$ or $d=3$ (so each vertex has 4 cells in 2 d and 8 in 3 d). Give a best-case estimate for the half-bandwidth p of the system matrix for a linear finite element space. Assuming that LU decomposition takes $O\left(p^{2} n\right)$ time and you can solve a 2 d problem with $n=10000$ in 1 second, discuss the amount of time necessary for $n=1$ million and $n=100$ million in 2 d and 3 d .
Bonus: what about a quadratic element?

