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Today’s largest supercomputers have 100,000s of processor cores and offer the potential to solve partial
differential equations discretized by billions of unknowns. However, the complexity of scaling to such large
machines and problem sizes has so far prevented the emergence of generic software libraries that support
such computations, although these would lower the threshold of entry and enable many more applications
to benefit from large-scale computing.

We are concerned with providing this functionality for mesh-adaptive finite element computations. We
assume the existence of an “oracle” that implements the generation and modification of an adaptive mesh
distributed across many processors, and that responds to queries about its structure. Based on querying the
oracle, we develop scalable algorithms and data structures for generic finite element methods. Specifically,
we consider the parallel distribution of mesh data, global enumeration of degrees of freedom, constraints,
and postprocessing. Our algorithms remove the bottlenecks that typically limit large-scale adaptive finite
element analyses.

We demonstrate scalability of complete finite element workflows on up to 16,384 processors. An imple-
mentation of the proposed algorithms, based on the open source software p4est as mesh oracle, is provided
under an open source license through the widely used deal.II finite element software library.
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1. INTRODUCTION

Computer clusters with tens of thousands and more processor cores are becoming more
and more common and are going to form the backbone of most scientific computing for
the currently foreseeable future. At the same time, the number of codes that efficiently
utilize these machines is relatively limited, due in large part to two reasons: (i) existing
legacy codes are difficult to parallelize to these massive numbers of processors since
data structures have to be conceived entirely differently; (ii) algorithm and data struc-
ture design is not trivial when the goal is to exploit machines of this size in a scalable
way.

In the past, continuum mechanics codes—for example based on the finite element
method—have been among the largest consumers of supercomputing resources. The
desire to run such codes on “massively” parallel machines dates back to at least the
early 1990s [Mathur et al. 1993; Devine et al. 1993; Tezduyar et al. 1994], although
the notion of what constitutes a large machine has evolved since then. On the other
hand, codes that scale to the largest available machines were then, and are now,
almost exclusively purpose-built for individual applications. For example, the codes
SPECFEMS3D [Carrington et al. 2008], CitcomS [Tan et al. 2008], and Rhea [Burstedde
et al. 2008a] have been written for particular geophysical applications and are not
based on general-purpose finite element libraries. The reason, of course, is that none
of the libraries widely used in academic and applied finite element simulations—such
as PLTMG [Bank 1998], DiffPack [Bruaset and Langtangen 1997; Langtangen 2003],
libMesh [Kirk et al. 2006], Getfem++ [Renard and Pommier 2006], OOFEM [Patzak
and Bittnar 2001], FEniCS/DOLFIN [Logg 2007; Logg and Wells 2010], or deal.II up
to version 6.x [Bangerth et al. 2007; Bangerth and Kanschat 2011]—support massively
parallel computations that will run on thousands of processors and routinely solve
problems with hundreds of millions or billions of cells and several billion unknowns.

This notwithstanding, there clearly is a demand for general-purpose finite element
libraries supporting such computations through a relatively simple, generic interface.
In this article, we will outline the algorithms that we have implemented in version 7.0
of the open source library deal.II, offering the ability to solve finite element problems
on fully adaptive meshes of the sizes mentioned previously to a wider community. While
deal.II provides a reference implementation of both the mentioned algorithms as well
as of tutorial programs that showcase their use in actual applications, our goal is to be
generic and our methods would certainly apply to other finite element libraries as well.
In particular, we will not require specific aspects of the type of finite element, nor will
the algorithms be restricted to quadrilaterals (2d) and hexahedra (3d) that are used
exclusively in deal.II.

When using thousands of processors! in parallel, two basic tenets need to be followed
in algorithm and data structure design: (i) no sizable amount of data can be replicated
across all processors, and (ii) all-to-all communications between processors have to
be avoided in favor of point-to-point communication where at all possible. These two

1Since this article is purely algorithmic, we will not distinguish between processors, processor cores, and MPI
processes [Message Passing Interface Forum 2009]. We will here use the terms interchangeably.
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points will inform to a large part what can and cannot work as we scale finite element
computations to larger and larger processor counts. For example, even if it would make
many operations simpler, no processor will be able to hold all of the possibly billions
of cells contained in the global mesh in its local memory, or even be able to compute
a threshold for which cells exceed a certain error indicator and should therefore be
refined.

In this article, we will not be concerned with the question of how to efficiently
generate and partition hierarchically refined meshes on large numbers of processors,
which presents a major challenge on its own. Rather, we will assign this task to an “or-
acle” that allows deal.II to obtain information on the distributed nature of the mesh
through a well-defined set of queries. These include for example whether a certain cell
exists on the current processor, or whether it is a “ghost” cell that is owned by another
processor. Using queries to the oracle, each processor can then rebuild the rich data
structures necessary for finite element computations for the “locally owned” part of the
global mesh and perform the necessary computations on them. In our implementation,
we use the pdest algorithms for 2d and 3d parallel mesh topology [Burstedde et al.
2011b] as the oracle; however, it is entirely conceivable to connect to different oracle
implementations—for example, packages that support the ITAPS iMesh interface
[Ollivier-Gooch et al. 2010]— provided they adhere to the query structure detailed
in this article, and can respond to certain mesh modification directives discussed
below.

We will detail the requirements deal.II has of the mesh oracle, a description of
the way p4est works, and the algorithm that builds the processor-local meshes in
Section 2. In Section 3, we will discuss dealing with the degrees of freedom defined
on a distributed mesh. Section 4 will then be concerned with setting up, assembling
and solving the linear systems that result from the application of the finite element
method; Section 5 discusses the parallel computation of thresholds for a-posteriori
error indicators and postprocessing of the solution. In reality, today’s supercomputers
do not consist of a set of equal, interconnected single-processor machines; rather, they
have multicore chips and may have general-purpose graphics processing units (GPUs).
Section 6 reviews our designs in light of these considerations on processor architecture
and argues that, at least given the current state of parallel linear algebra and solver
software, using a “flat” MPI space consisting of single-threaded processes is still the
most practical choice. We provide numerical results that support the scalability of all
proposed algorithms in Section 7 and conclude in Section 8.

2. PARALLEL CONSTRUCTION OF DISTRIBUTED MESHES

Finite element methods decompose the computational domain into a collection of cells,
called a mesh or grid. We understand the term mesh primarily as information on the
topological relationships between cells—that is, how cells are connected by neighbor-
ship relations—rather than on the geometric location of cells, although the latter also
needs to be stored for finite element applications.

The parallel scalability of previous versions of deal.II was restricted by a bottleneck
present in many generic finite element libraries, namely the requirement to replicate
the global mesh structure on each processor. As the number of mesh cells is increased,
memory requirements increase in proportion. It is thus obvious that replicating the
mesh storage on each processor limits the total mesh size by the amount of local pro-
cessor memory, which is not likely to grow in the future. We resolve this limitation
by distributed mesh storage with coarsened overlap: Each processor still stores a local
mesh that covers the whole domain, but this mesh is now different on each proces-
sor. It is identical to the global mesh only in the part that is identified by the oracle
as “locally owned” by the current processor, whereas the remaining and much larger
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non-owned part of the local mesh is coarsened as much as possible, rendering its
memory footprint insignificant. With this approach the global mesh is not replicated
anymore but understood implicitly as the disjoint union of the locally owned parts on
each processor. To achieve parallel scalability of the complete finite element pipeline,
the storage of degrees of freedom and matrices arising from a finite element discretiza-
tion must be fully distributed as well, which can be achieved by querying the oracle
about ghost cells and creating efficient communication patterns and data structures
for index sets as we will explain in the following.

We encode the distributed mesh in a two-layered approach. The inner layer, which
we refer to as the “oracle”, provides rudimentary information on the owned part of the
mesh and the parallel neighborhood, and executes directives to coarsen, refine, and
re-partition the mesh. The outer layer interacts with the oracle through a well-defined
set of queries and builds a representation of the mesh that includes the refinement
hierarchy and some overlap with neighboring mesh parts, and is rich enough to pro-
vide all information needed for finite element operations. This two-layered approach
effectively separates a large part of the parallel management of mesh topology in the
oracle from the locally stored representation retaining the existing infrastructure in
deal.II.

There is a significant amount of literature on how to generate and modify distributed
adaptive meshes in parallel. For example, Burri et al. [2005], Tu et al. [2005], Chand
et al. [2008], Sundar et al. [2008], and Knepley and Karpeev [2009] discuss related
data structures and algorithms. In the current contribution, we base our work on the
open source software library p4est, which realizes the oracle functionality in the sense
outlined above, and has been shown to scale to hundreds of thousands of processors
[Burstedde et al. 2011b]. However, any other software that allows the well-defined
and small list of queries detailed below may equally well be used in place of p4est.
For example, this could include the packages that support the ITAPS iMesh interface
[Ollivier-Gooch et al. 2010].

In this section, we define the general characteristics of the mesh, propose an algo-
rithm to construct the local mesh representation based on querying the oracle, and
document mesh modification capabilities required from the oracle.

2.1. Assumptions on Parallel Distributed Meshes

We will here not be concerned with the technical details of the parallel storage of meshes
or the algorithms hidden within the oracle. In particular, for our purposes, we only need
to be able to infer what cells exist, how they relate to each other via neighborship, and
how they have been derived by hierarchic refinement from a small to moderate set
of initial coarse mesh cells. We will make the following general assumptions that are
respected by both the inner layer or oracle (p4est) and the outer layer (implemented
within deal.II).

—Common Coarse Mesh. All cells are derived by refinement from a common coarse
mesh that can be held completely on each of the processors and should therefore not
exceed a few 100,000 to a million cells. In general, the common coarse mesh only
needs to provide a sufficient number of cells to capture the topology of the computa-
tional domain, which is often below 100 or even as small as 1, while mesh refinement
takes care of geometric details. Only in rare cases does geometric complexity require
100,000s or more coarse mesh cells; consequently, we reserve the dynamic partition-
ing of coarse cells, which is certainly feasible, for a future extension. Because deal.II
exclusively supports quadrilaterals and hexahedra, we will henceforth assume that
the common coarse mesh only consists of such cells, though this is immaterial for
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almost all that follows, and our algorithms are equally valid when applied to meshes
consisting of triangles or tetrahedra.

—Hierarchic Refinement. Each of the common coarse mesh cells may be hierarchically
refined into four (2d) or eight (3d) children that may in turn be further refined
themselves. This naturally gives rise to a quad- or octree rooted in each common
coarse cell, and an appropriate data structure for the entire mesh then is a quad- or
octforest. Therefore each cell can be uniquely identified by an index into the common
coarse mesh (i.e., its tree number) and an identifier that describes how to walk
through the corresponding tree to the (refined) cell.

—2:1 Mesh Balance. We demand that geometrically neighboring cells may differ by
only a single refinement level, thereby enforcing that only a single hanging node can
exist per face or edge. This condition is mostly for convenience, since it simplifies the
creation of interpolation operators on interfaces between cells.

—Distributed Storage. Each processor in a parallel program may only store a part
of the entire forest that is not much larger than the total number of cells divided
by the number of processors. This may include a fixed number of ghost cell layers,
but it cannot be a fraction of the entire mesh that is independent of the number of
processors. We explicitly permit that each processor may store parts of more than
one tree, and that parts of a given tree may be stored on multiple processors.

Note that a mesh is independent of its use; in particular, it has no knowledge of finite
element spaces defined on it, or values of nodal vectors associated with such a space.
It is, thus, a rather minimal data structure to simplify parallel distributed storage.
Furthermore, the separation of mesh and finite element data structures establishes a
clean modularization of the respective algorithms and implementations.

2.2. A Mesh Oracle and Interface to Deal.II

deal.II needs to keep rich data structures for the mesh and derived objects. For
example, it needs to know the actual geometric location of vertices, boundary indicators,
material properties, etc. It also stores the complete mesh hierarchy and data structures
of surfaces, lines and points and their neighborship information for traversal, all of
which are required for the rest of the library and to support algorithms built on it.

On the other hand, p4est only stores the terminal nodes (i.e., the leaves) of the
parallel forest explicitly. By itself, this is not enough for all but the most basic finite
element algorithms. However, we can resolve this apparent conflict if deal.II builds
its own local mesh on the current processor, using the locally stored portion of the
parallel distributed mesh stored by p4est as the template, and augmenting it with the
information needed for more complex algorithms. In a sense, this approach forms a
synthesis of the completely distributed and lean data structures of p4est and the rich
structures of deal.II. Designing this synthesis in a practical and scalable way is one
of the innovations of this article; we will demonstrate its efficiency in Section 7.

In order to explain the algorithm that reconstructs the local part of a mesh on one
processor, let us assume that both deal.II and p4est already share knowledge about
the set of common coarse cells. Then, deal.II uses p4est as an oracle for the following
rather minimal set of queries.

—Does a given terminal deal.II cell exist in the portion of the p4est mesh stored on
the current processor?

—Does a given deal.II cell (terminal or not) overlap with any of the terminal pdest
cells stored on the current processor?

—Does a given deal.II cell (terminal or not) overlap with any of the terminal pdest
ghost cells (defined as a foreign cell sharing at least one corner with a cell owned by
the current processor)?
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copy-to_deal:
do
for all coarse mesh cells K:
match_tree_recursively(K)
refine and coarsen all cells previously marked
while (the mesh changed in the last iteration)

match_tree_recursively(K):
if (mesh oracle: does K overlap with a cell in the locally owned or ghost parts of the mesh?)
if (K has children)
for each child K. of K
match_tree_recursively(K,)
else
if (not (mesh oracle: does K exist in the locally owned or ghost parts of the mesh?))
mark K for refinement
else
mark the most refined descendents of K, or K itself, for coarsening

Fig. 1. Pseudocode for reconstructing the local part of a mesh in deal.Il, based on querying the mesh oracle
provided by p4est. The algorithm starts with an arbitrary mesh and terminates once the mesh contains all
cells that the oracle indicates as either locally owned or ghost cells.

—Is a given p4est cell a ghost cell and if yes, which processor owns it?

The algorithm for mesh reconstruction based on only these queries is shown in Figure 1.
It is essential that all queries are executed fast, that is, in constant time or at most
O(log N), where N is the number of local cells, to ensure overall optimal complexity.
Furthermore, no query may entail communication between processors. Note that the
reconstruction algorithm makes no assumptions on the prior state of the deal.II mesh,
allowing for its coarsening and refinement as the oracle may have moved cells to a
different processor during adaptive mesh refinement and re-partitioning. In a deal.II
mesh so constructed, different kinds of cells exist on any particular processor.

—Active cells are cells without children. Active cells cover the entire domain. If an active
cell belongs to a part of the global mesh that is owned by the current processor, then
it corresponds to a leaf of the global distributed forest that forms the mesh. In that
case, we call it a locally owned active cell.

—Ghost cells are active cells that correspond to leaves of the distributed forest that are
not locally owned but are adjacent to locally owned active cells.

—Artificial cells are active cells that are neither locally owned nor ghost cells. They are
stored to satisfy deal.II’s invariants of never having more than one hanging node
per face or edge, and of storing all common coarse mesh cells. Artificial cells can,
but need not correspond to leaves of the distributed forest, and are skipped in every
algorithm inside deal.II.

—Nonactive cells are cells that have children. deal.II stores all intermediate cells that
form the hierarchy between coarse mesh cells (the roots of the trees) and active cells.

Figure 2 shows the result of executing copy_to_deal (Figure 1) on an example mesh
distributed among four processors. Note that no processor has knowledge of the entire
global mesh—each processor only matches its own cells as well as one layer of ghost
cells. Here, the parallel partition and identification of ghost cells is computed by p4est,
which orders all cells according to a space-filling z-curve [Morton 1966]. Therefore, the
part of the global mesh owned by a processor may not be contiguous. This can be seen
in the second panel of the figure.
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Fig. 2. Example of an adaptively refined mesh distributed across four processors. The cyan, green, yellow,
and red colors indicate which processor owns any given cell. The four panels depict the views each of the
four processors has of the mesh. Note that each processor knows only (i) the global cells it owns, and (ii) one
layer of ghost cells in the global mesh and their owner processor identifiers. The artificial cells (indicated
in dark blue) carry no information. The effective mesh used for computation is the union of the four locally
owned parts.

Remark 1. Storing artificial cells that do not belong to the coarse mesh appears
wasteful since these cells are indeed unnecessary for almost all computations. As
pointed out above we only store them to maintain the invariants for which the base
library, deal.II, has been extensively validated. Clearly, the fraction of artificial cells
decreases as the number of cells stored locally increases. For the 2d example discussed
in Section 7.1, which has 1 coarse cell, our numerical experiments suggest that the
ratio Nartificial/(Vactive + Nghost) 18 only very weakly dependent on the number of proces-
sors, and decreases as O((Nactive + Nghost) *?%). On a fine mesh with 4,096 processors
and a total of almost 600 million cells, on average only 3% of the cells stored locally are
artificial and on no processor does this number exceed 5%.

We reflect the different types of cells using the following notation: Let T denote the

set of all terminal cells that exist in the distributed mesh. Furthermore, let ’H‘f;c C T be
the subset of cells that processor p owns; obviously, | » T . = T, and we will require
that T, N T}, = ¢ for all p # q. Finally, let Tghost C T be the set of ghost cells that

processor p knows about; we have that Tghost N T}, = ¥ and we will assume that each

ghost cell K C ']I‘ghost has at least one neighbor in T}, , where neighborship is via faces,
lines, or vertices. In addition to T? and T? ., each processor stores additional terminal

loc ghost?
cells that may or may not be terminal cells in T, for example some coarse mesh cells.

We will call these artificial cells and denote them by T? .. . .: they are shown in dark
blue in Figure 2.

2.3. Directives for Mesh Modification

We will require that the oracle not only responds to the queries listed previously, but
also performs several operations that modify the distributed global mesh. Such mesh
modifications are often used during the startup phase of a simulation, or repeatedly to
adapt according to error indicators or to track dynamical features of a simulation that
evolves over time.

—Refine and/or coarsen the mesh based on flags set by deal.II. Refinement and coars-
ening shall be executed locally without communication between processors.

—Enforce 2:1 mesh balance by additional refinement where necessary, limiting the
level difference between neighboring cells to one. This is done as a postprocessing step
to local refinement and coarsening which involves communication with processors
that own nearby parts of the mesh.

—Re-partition the cells of the global mesh in parallel to ensure load balance
(the most commonly used criterion being to equalize the number of cells among
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processors). This operation involves mostly point-to-point communication. During
the re-partitioning step, additional information shall be attached to the cells. When
a cell is migrated from one processor to another, this data is automatically migrated
with the cell.

While this functionality can entail considerable complexity, it is likely to be available
from implementations of parallel mesh data bases. Thus, we do not consider the above
specifications unnecessarily restrictive. In the case of p4est we refer the reader to
the algorithms presented in Burstedde et al. [2011b]. deal.II makes use of these
capabilities to efficiently implement a number of operations typical of finite element
codes; see Section 5.

3. DEALING WITH GLOBAL INDICES OF DEGREES OF FREEDOM

Once we have a local representation of a distributed mesh, the next step in any finite
element program is to connect the finite element space to be used with the triangulation.
In deal.II, this tasks falls to the DoFHandler class [Bangerth et al. 2007] that inspects
a FiniteElement object for the number of degrees of freedom that are required per
vertex, line, face, and cell. For example, for a Taylor-Hood (Qg x @) element used for
the Stokes equations in d space dimensions, we need d + 1 degrees of freedom per
vertex, and d for each line, quad and hex (if in 3d). The DoFHandler will then allocate
global numbers for each of the degrees of freedom located on the vertices, lines, quads
and hexes that exist in the triangulation. A variant of this class, hp: :DoFHandler, is
able to do the same task if different finite elements are to be used on different cells
such as in hp-adaptive computations [Bangerth and Kayser-Herold 2009].

In the current context, we will have to assign global indices for degrees of freedom
defined on a mesh of which we only know a certain part on each processor. In the
following subsections, we will discuss the algorithms that achieve this task, followed
by strategies to deal with the constraints that result from hanging nodes. Together,
indices of degrees of freedom and constraints will completely describe a basis of the
finite element space we want to use.

3.1. Enumerating Degrees of Freedom

The simplest way to distribute global indices of degrees of freedom on the distributed
mesh would be to first let processor 0 enumerate the degrees of freedom on the cells it
owns, then communicate the next unused index to processor 1 that will then enumerate
those degrees of freedom on its own cells that have not been enumerated yet, pass the
next unused index to processor 2, and so on. Obviously, this strategy does not scale
beyond a small number of processors.

Rather, we use the following algorithm to achieve the same end result in a parallel
fashion where all processors p = 0,..., P — 1 work independently unless noted oth-
erwise. This algorithm also determines the ownership of degrees of freedom on the
interface between cells belonging to different processors. The rule for decision of own-
ership is arbitrary but needs to be consistent and must not require communication.
The number of processors involved is typically up to eight for a degree of freedom on
a vertex in 3d, but can be even higher for a coarse mesh with complicated topology.
We resolve to assign each degree of freedom on an interface between processors to the
processor with the smallest processor identifier (the “rank” in MPI terminology).

(0) On all active cells (locally owned or not), initialize all indices of degrees of freedom
with an invalid value, for example —1.

(1) Flag the indices of all degrees of freedom defined on all cells K € Tf;e by assigning
to them a valid value, for example 0. At the end of this step, all degrees of freedom
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on the locally owned cells have been flagged, including those that are located on

: . mp p
interfaces between cells in T , and Tghost.

(2) Loop over all ghost cells K € Tghost; if the owner of K is processor ¢ and g < p then

reset indices of the degrees of freedom located on this cell to the invalid value. After
this step, all flagged degrees of freedom are the ones we own locally.

(3) Loop over all cells K € T}, and assign indices in ascending order to all degrees
of freedom marked as valid. Start at zero, and let n, be the number of indices
assigned. Note that this step cannot be incorporated into step (2) because degrees
of freedom may be located on interfaces between more than two processors and a

cell in T{  may not be able to easily determine whether cells that are not locally
owned share such an interface.

(4) Let all processors communicate the number n, of locally owned degrees of freedom

to all others. In MPI terminology, this amounts to calling MPI_Allgather. Shift the
indices of all enumerated degrees of freedom by 25;3 ng. At the end of this step,
all degrees of freedom on the entire distributed mesh have been assigned globally
unique indices between 0 and N = 25;01 ng, and every processor knows the correct
indices of all degrees of freedom it owns. However, processor p may not know the
correct indices of degrees of freedom on the interface between its cells and those
owned by other processors, as well as the indices on ghost cells that we need for
some algorithms. These remaining indices will be obtained in the next two steps.
(5) Communicate indices of degrees of freedom on cells in T} to other processors
according to the following algorithm:
(a) Flag all vertices of cells in T}, ..

(b) Loop over vertices of cells in ’]I‘ghoSt and populate a map that stores for each of

the vertices flagged in step (a) the owning processor identifier(s) of adjacent
ghost cells.

(¢) Loop over all cells in T}, .. If according to the previous step one of its vertices is
adjacent to a ghost cell owned by processor g, then add the pair /cell_id, indices
of degrees of freedom on this cell] to a list of such pairs to be sent to processor g.
Note that the same pair can be added to multiple such lists if the current cell is
adjacent to several other processors’ cells. Note also that every cell we add on

processor p to the list for processor q is in T‘éhost. This communication pattern is

symmetric, that is, processor p receives a message from q if and only if it sends
to g; this symmetry avoids the need to negotiate communications.

(d) Send the contents of each of these lists to their respective destination processor
g using nonblocking point-to-point communication.

(e) From all processors that the current one borders (i.e., the owners of any of the

cells in Tghost), receive a list as created above. Each of the cells in this list refer

to a ghost cell; for each of these cells, set the indices of the degrees of freedom
on this cell to the ones given by the list unless the index in the list is invalid.
Note that while the lists created in step (c) contain only cells owned by the current
processor, not all indices in them are known as they may lie on an interface to
another processor. These will then be the invalid index, prompting the need for the
conditional set in step (e). On the other hand, it is easy to see that if an index located
on the interface between two ghost cells is set more than once, then the value so
set is always either the same (if the ghost cells belong to the same processor) or the
invalid marker (in which case we ignore it).
(6) At the end of the previous step, all cells in T},  have their final, correct indices set.
However, some ghost cells may still have invalid markers since their indices were
sent by processors that at the time did not know all correct indices yet. They do
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now, however. Consequently, the last step is to repeat the actions of step (5). We
can optimize this step by only adding cells to the send lists that prior to step (5) (e)
had invalid index markers.

At the end of this algorithm, each processor knows the correct global indices of
degrees of freedom on all of the cells it locally owns as well as on all the ghost cells. We
note that this algorithm is not restricted to A-refined meshes but is equally applicable
to hp-adaptivity.

A similar algorithm that makes the same decision for degrees of freedom on the inter-
face is detailed in Logg [2009], but there are a few crucial differences to our approach:
First, their algorithm contains a sequential part to compute the indices of shared de-
grees of freedom (Stage 2), while ours does that computation in parallel. Second, our
approach lends itself to non-blocking communication (see step (5)(d)). Third, we decided
to realize the communication over shared vertices instead of facets, which simplifies
the calculation and enables us to send data directly to the destination (instead of send-
ing it indirectly via other processors when only a vertex is shared). Fourth, instead of
implementing a more complicated logic for transferring individual degrees of freedom,
we opted to always send all degrees of freedom belonging to a cell and even to accept
sending a cell twice, which can only happen for some cells that touch more than one
other processor (see step (6)). Because we transfer the data of the whole cell, we ensure
knowledge of all degrees of freedom on ghost cells, not only those on the interface to
locally owned cells as described in Logg [2009] or Burstedde et al. [2011b]; this is nec-
essary for a number of algorithms that need to, for example, evaluate the gradient of
the solution on both sides of an interface. While our approach requires sending slightly
larger messages, it is overall more efficient because that data does not need to be sent
later in an additional communication step. The rationale here is that since the amount
of data exchanged is modest in either case, communication cost is dominated by latency
rather than message size.

Remark 2. Our algorithm always assigns degrees of freedom on the interface be-
tween processors to the one with the smallest processor identifier. This results in a
slight imbalance: processors with identifiers close to zero tend to own more degrees of
freedom than the average, and processors with ranks close to the parallel job size own
less, while most processors in the bulk own roughly the average number.

One may therefore think about constructing a better tie breaker for ownership
of degrees of freedom on processor interfaces. deal.II implements such a fairer
scheme in a mode where each processor stores the entire mesh, as does the current
code of FEniCS/DOLFIN. However, our experiments indicate that at least relatively
simple schemes do not pay off, for several reasons. First, when different degrees of
freedom on the same edge or face are assigned to two different processors A and
B, matrix-vector multiplications require roughly twice the amount of data transfer
because the connectivity graph between degrees of freedom is partitioned by cutting
more edges than when assigning all degrees of freedom on a complete face to one
side alone. Second, determining ownership is easily done without communication in
our algorithm. Third, the workload in downstream parts of the finite element code
is typically quite well balanced, as the cost for many operations is proportional to
the number of local cells—which p4est balances perfectly—and not to the number of
degrees of freedom. Finally, by enumerating the degrees of freedom on at least one
of the cells adjacent to an interface in a natural ordering, we improve cache locality
and thus the performance when accessing corresponding data. To evaluate these
arguments, we carefully analyzed the distribution of degrees of freedom and observed
only a small imbalance in memory consumption in our numerical tests, while we found
excellent scalability of our matrix-vector product implementation.
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3.2. Subsets of Degrees of Freedom

In the following sections, we will frequently need to identify certain subsets of degrees
of freedom (by convention by identifying their respective global indices). To this end,
let us define the following subsets of the complete set of indices 7 = [0, N).

—7} denotes the set of degrees of freedom locally owned by processor p. These are
all defined on cells in T}, , though some of the degrees of freedom located on the
interfaces of these cells with other processors may be owned by the neighboring

processor. We have n, = #1f, , |, 7/, = Z, and Zj, NI}, = ¢ for p # q. Note that

following the algorithm described in the previous section, the set of indices in 7}, is

contiguous. However, this is no longer true when degrees of freedom are renumbered

later.

—7F, denotes the set of degrees of freedom that are locally active for processor p.
This set contains all degrees of freedom defined on T}, , and Z;,, N7}, identifies all
those degrees of freedom that live on the interface between the subdomains owned
by processors p and q if these are neighbors connected by at least one vertex of the
mesh.

—7ZF. denotes the set of degrees of freedom that are locally relevant for processor p. We
define these to be the degrees of freedom that are located on all cells in T}, U T% ;.
These index sets 7/, C I/, C I}, need to be represented in a computer program for

the algorithms discussed. Maybe surprisingly, we have found that the data structures

chosen for this have an enormous impact on the efficiency of our programs as the
number of queries into these index sets is very large. In particular, we will frequently
have to test whether a given index is in an index set, and if it is we will have to
determine the position of an index within this set. The latter is important to achieve
our goal that no processor should ever hold arrays on all elements of Z: rather, we

would like to compress these arrays by only storing data for all elements ofaset Z C Z,

but for this we need to map global indices into positions in index sets and vice-versa.

The efficient implementation of such operations is therefore an important aspect, in

particular if the index set is not simply a single contiguous range of indices.

In deal.II, the IndexSet class implements all such queries. It stores an index set
as the union 7 = Usz olbr, ex) of K half open, disjoint, contiguous intervals that we
store sorted by their first indices b;. Here, we denote by 7 a generic index set that
could, for example, be any of these sets. For isolated indices, we have e, = b, + 1. This
data structure allows to test whether an index is in the set in O(log, K) operations.
However, the determination of the position of a given index i in the set would require
O(K) operations: if £ is the interval in which i is located, that is, by <i < ey, then

k-1
pos(i, 1) = > (e — by) + (i — by),
k=0

where the determination of # = min{k : i < ez} can be done in parallel to summing
over the sizes of intervals. Similarly, computing the value of the mth index in a set 7
would require O(K) operations on average.

We can remove both these bottlenecks by storing with each interval [b;, e;) the num-
ber p, = Zl,:;(l)(e,( —b,) = pp_1 +(er_1 — by_1) of indices in previous intervals. We update
these numbers at the end of generating an index set, or whenever they have become
outdated but a query requires them. Finding the position of index i then only requires
finding which interval £’ it lies in, that is, an O(log, K) operation, and then computing
pr + 1 — by. Likewise, finding the value of the mth index requires finding the largest
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pr < m, which can also be implemenNted in O(log, K) operations. In summary, storing
an index set as a sorted collection Z ~ {(bg, ep, pk),fz o} of triplets allows for efficient
implementation of all operations that we will need.

3.3. Constraints on Degrees of Freedom

The algorithms previously described provide for a complete characterization of the basis
of the finite element space on each cell. However, since we allow hanging nodes in our
mesh, not every local degree of freedom is actually a global degree of freedom: some are
in fact constrained by adjacent degrees of freedom. In general, the construction of such
constraints for hanging nodes is not overly complicated and can be found in Rheinboldt
and Mesztenyi [1980], Carey [1997], and Solin et al. [2003; 2008]; the algorithms used
in deal.II are described in Bangerth et al. [2007] and Bangerth and Kayser-Herold
[2009]. We will here focus on those aspects particular to distributed computations.
Constraints on degrees of freedom typically have the form

N-1
xi:ZCijxj+bi’ iEICCI,
Jj=0

where 7. is the set of constrained degrees of freedom, and the constraint matrix c;;
is typically very sparse. For hanging nodes, the inhomogeneities b; are zero; as an
example, for lowest order elements the constraints on edge mid-nodes have the form
X = 1xo + %xl. Constraints may also originate from strongly imposed Dirichlet-type
boundary values in the form xy = 42, for example.

3.3.1. Which Constraints Need to be Stored. As in other parts of this article, it is clear
that not every processor will be able to store the data that describes all the constraints
that may exist on the distributed finite element space. In fact, each processor can only
construct constraints for a subset of Z/. N Z. since it has no knowledge of any of the
other degrees of freedom. Consequently, the question here is rather which subset Z? of
constraints each processor could in principle construct, and which it needs to construct
and store locally for the algorithms described below to work.

For sequential computations, one can first assemble the linear system from all cell
contributions irrespective of constraints and in a second step “eliminate” constrained
degrees of freedom in an in-place procedure (see, e.g., Bangerth and Kayser-Herold
[2009, Section 5.2]). On the other hand, in distributed parallel computations, no pro-
cessor has access to a sufficient number of matrix rows to eliminate constrained degrees
of freedom after the linear system has already been assembled from its cell-wise con-
tributions. Consequently, we have to eliminate constrained degrees of freedom already
when copying local contributions into the global linear system. While this may not be
quite as elegant, it has the benefit that we know exactly what degrees of freedom we
may have to resolve constraints for. Namely, exactly those that may appear in local
contributions to the global linear system: if processor p has a contribution to global
entry (i, j) of the matrix, then it needs to know about constraints on degrees of freedom
i and j. Which these are depends on both the finite element as well as the bilinear form
in use.

Local contributions to the global linear system are computed by each processor for
all cells T] _ (i.e. for all degrees of freedom in 7/, ). For most finite elements and bilinear
forms, the local contribution consists of integrals only over each cell K € T}, and
consequently every processor will only need to know constraints on all degrees of
freedom in 77 = Z, N I}, . Discontinuous Galerkin methods also have jump terms
between cells, and consequently need to also know about constraints on degrees of

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 14, Publication date: December 2011.



Algorithms and Data Structures for Adaptive Finite Element Codes 14:13

processor 0

processor 1

Fig. 3. Illustration of a situation where constraints need to be computed between two ghost cells.

freedom on cells neighboring those that are locally owned; in that case, we need to
know about all constraints in 77 = Z. N I/, .

3.3.2. Dealing with Chains of Constraints. These considerations are of only theoretical in-
terest if constraints can be against degrees of freedom that are themselves constrained,
that is, if constraints form chains. This frequently happens in at least two situations.
First, it is common in Ap-adaptive methods; (see that is, Bangerth and Kayser-Herold
[2009]. In that case, it is even conceivable that chains of constraints extend to the
boundary between ghost and artificial cells. Then, the depth of the ghost layer would
need to be extended to more than one layer of cells, thereby also expanding the set Z}, .
We will not consider such cases here.

The second, more common situation is if we have Dirichlet boundary conditions on
degrees of freedom, that is, constraints of the form xy = 42. If another constraint, for
example, xo = 1xy + %xl, references such a degree of freedom xy and if the latter is
located in the gilost layer, then we need to know about the constraint on xy. For this
reason, in deal.IT each processor always stores all those constraints in 77 = 7. N Z.
that can be computed on locally owned and ghost cells.

3.3.3. Computing Constraints for Hanging Nodes. Of equal importance to the question of
which constraints we need to store is the question how we can compute the necessary
constraints that result from hanging nodes. Let us first consider the case of continuous
elements with only cell integration, that is, Z¥ = Z. N Z/, . Since all of these degrees of
freedom are adjacent to locally owned cells, it may appear that it is sufficient to compute
constraints by only considering hanging nodes at faces between two locally owned cells,
or between a locally owned cell and a ghost neighbor. While we believe that this true in
two space dimensions, this is not so in 3d. For example, consider the situation depicted
in Figure 3, assuming trilinear finite elements. The degree of freedom indicated by
the blue dot is locally active both on processor 0 (white cells) and processor 1 (yellow
cells in front). However, since hanging node constraints are computed based on the
face between coarse and fine cells, not solely on edges, processor 1 can only know about
the constraint on this degree of freedom by computing the constraint on the interface
between the white cells, all of which are ghost cells for processor 1.

Since the structure and size of the set 7” depends also on the bilinear form, one can
imagine situations in which computing it is even more involved than described in the
previous paragraph. For example, if the bilinear form calls for face integrals involving
all shape functions from both sides of the face, we would need to have constraints
also on all degrees in Z/, which we may not be able to compute only from a single
layer of ghost cells. Fortunately, most discretizations that require such terms have
discontinuous shape functions that do not carry constraints on hanging nodes; for a
counter-example, see Kanschat and Riviere [2010].

3.3.4. Evaluating Constraints. When copying local contributions into the global matrix
and right-hand-side vector objects during finite element assembly of linear systems, we
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have to determine for each involved degree of freedom ; whether it is constrained or not,
and if it is what the coefficients c;;, b; of its constraint are. For the sequential case, the
deal.IT class ConstraintMatrix stores an array of integers for all degrees of freedom.
These integers contain the position of the constraint in the list of all constraints, or —1
for i ¢ Z.. This guarantees that the query whether i is constrained can be performed in
O(1), as is actually accessing the constraints.

On the other hand, in the parallel distributed case under consideration here, this
strategy is not compatible with our desire to never store arrays on all degrees of freedom
on a single processor. Rather, we are presented with two options.

—On each processor, the ConstraintMatrix stores a sorted container of #7 elements
each of which contains the index of the constrained degree of freedom and its con-
straints. Finding whether index i is constrained and if so accessing its constraints
can then be done using O (logy(#Z%)) operations.

—On each processor, this class stores an array of #Z/, integers. Finding whether an
index i € I/, is constrained then requires finding the position r; of i within Z/, and
testing position r; in the array whether the integer stored there is —1 (indicating
that there are no constraints on i) or otherwise is an index into an array describing
the constraints on i. As explained in Section 3.2, finding r; can be done in O(logy KP)
ogerations where K? is the number of half-open intervals that are needed to describe
7.

Here, the second strategy requires a factor of #Z7. /#Z more memory, but it is cheaper
in terms of run time if K? « #I7. The former is not a significant problem, since storing
a single integer for every locally active degree of freedom is not a noticeable expense
overall. Whether the latter condition is true depends on a number of application depen-
dent factors: (i) how much local refinement is required to resolve the solution, as this
influences #Z7; (ii) the ratio of the number of ghost cells (which roughly determines K?)
to the number of cells (which roughly determines #Z2 up to a factor). The ratio in the
second point also depends on the number of refinement steps as well as the number of
processors available.

In a number of numerical experiments, we have not been able to conclusively deter-
mine which of these two strategies would be more efficient since the ratio of K? to #Z7
is highly variable. In particular, neither of these numbers are uniformly much smaller
than the other. deal.II currently implements the second strategy.

As a final note in this section, let us remark that the strategies described have
turn out to be as conservative as one can be with only one layer of ghost cells: we
compute even constraints for degrees of freedom located between ghost cells, and we
also store the maximal set of constraints available. Coming to the conclusion that both
is necessary is the result of many long debugging sessions since forgetting to compute
or store constraints does not typically result in failing assertions or other easy to find
errors. Rather, it simply leads to the wrong linear system with generally unpredictable,
though always wrong, solutions.

4. ALGORITHMS FOR SETTING UP AND SOLVING LINEAR SYSTEMS

After creating the mesh and the index sets for degrees of freedom as discussed above,
we can turn to the core objective of finite element codes, namely assembling and solving
linear systems. We note that for parallel linear algebra, deal.II makes use of PETSc
[Balay et al. 2008, 2010] and Trilinos [Heroux et al. 2005, 2011], rather than imple-
menting this functionality directly. We will therefore not elaborate on algorithms and
data structures for these linear algebra operations, but rather show how distributed
finite element programs can interface with such packages to be correct and efficient.
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Fig. 4. Illustrating why sparsity patterns cannot be built up without communication: Degrees of freedom
associated with a @; finite element on a mesh split between two processors. Processor 0 owns degrees of
freedom 0... 8, processor 1 owns 9...20.

4.1. Setting Up Sparsity Patterns

Finite element discretizations lead to sparse matrices that are most efficiently stored
in compressed row format. Both PETSc and Trilinos allow application programs to pre-
set the sparsity pattern of matrices to avoid re-allocating memory over and over during
matrix assembly. deal.II makes use of this by first building objects with specialized
data structures that allow the efficient build-up of column indices for each row in a
matrix, and then bulk-copying all the indices in one row into the respective PETSc or
Trilinos matrix classes. Both of these libraries can then store the actual matrix entries
in a contiguous array in memory. We note here that each processor will only store
matrix and vector rows indexed by Z/, when using either PETSc or Trilinos objects.
Since 7 = |, Z,, and the sets 7}, are mutually disjoint, we achieve a nonoverlapping
distribution of rows between the available processors.

In the current context, we are interested in how pre-computing sparsity patterns can
be achieved in a parallel distributed program. We can build the sparsity pattern if every
processor loops over its own cells in T} = and simulates which elements of the matrix
would be written to if we were assembling the global matrix from local contributions. It
is immediately clear that we will not only write into rows r that belong to the current
processor (i.e., r € Z}), but also into rows r that correspond to degrees of freedom
owned by a neighboring processor ¢ but located at the boundary (i.e., r € 7/, NZ})),
and last but not least into rows which the degree of freedom r may be constrained to
(these rows may lie in Z/, NZ}).

It would therefore seem that processor p needs to communicate to processor g the
elements it will write to in these rows in order for processor g to complete the sparsity
pattern of those rows that it locally stores. One may now ask whether it is possible
for processor ¢ to determine which entries in rows corresponding to Z/, NZ}  will be
written to by processor p, thereby avoiding communication. This is, in fact, possible as
long as there are no constrained degrees of freedom: each processor will simply have to

loop over all cells T}, . U ']Tghost, simulate assembly of the matrix, and only record which

elements in rows Z/, will be written to, ignoring all writes to other rows.
Unfortunately, this process does no longer work once constraints are involved, since
processors cannot always know all involved constraints. This is illustrated in Figure 4.
Consider the situation that the bottom three cells are owned by processor 0, and the
rest by processor 1. Then Z), = [0, 8], Z}, = [9, 20], and these two processors will store
constraints for Z0 = {6, 17, 19}, 7 = {6, 17, 19, 20} as explained in Section 3.3.2.
Consider now the matrix entries that processor 1 will have to write to when assem-
bling on cell B (shaded yellow). Since degrees of freedom 17 and 20 are constrained to
5,10 and 10,11, respectively, after resolution of constraints we will have matrix entries
(5, 10) and (5, 11), among others. But because 5 € 7, these entries need to be stored
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on processor 0. The question now is whether processor 0 could know about this without
communicating with processor 1. The answer is no: we could have known about entry
(5, 10) by simulating assembly on cell A, which is a ghost cell on processor 0. However,
processor 0 cannot possibly know about the matrix entry (5, 11): the cells B and C are

not in ’]I‘ghost, and so processor 0 does not know anything about degree of freedom 20 in

the first place, and certainly not that it is constrained to degrees of freedom 10 and 11.

In summary, we cannot avoid communicating entries into the sparsity pattern be-
tween processors, though at least this communication can be implemented point-to-
point. We note that in the case of Trilinos, the Epetra FECrsGraph class (implementing
sparsity patterns) can take care of this kind of communication: if we add elements to
rows of the sparsity pattern that are not stored on the current processor, then these will
automatically be transferred to the owning processor upon calling Epetra FECrsGraph’s
GlobalAssemble function. A similar statement holds for PETSc objects though there does
not seem to be a way to communicate entries of sparsity patterns between processors.
Consequently, when interfacing with PETSc, we send the entries generated in rows that
are not locally owned to the corresponding processor after concluding creation of the
sparsity pattern. This way each processor sends one data packet with indices to each of
its neighboring processors. The process is fast because each processor only has to look
at the rows with indices 7;,. \ Z;,. and all communication can be done point-to-point in
a non-blocking fashion. Received indices are then inserted into the local rows of the
sparsity pattern.

4.2. Assembling the Linear System

After presetting the sparsity pattern of the matrix, assembling the linear system hap-
pens in the usual way by computing contributions from all cells in T}, , resolving
constraints, and transferring the entries into the global matrix and vector objects. For
the same reasons as previously discussed, some communication cannot be avoided, but
both PETSc and Trilinos automatically take care of communicating matrix entries to

the correct processors at the end of the assembly process.

4.3. Solving the Linear System

Once assembled, we need to solve the resulting linear system that can contain billions
of unknowns. Both PETSc and Trilinos offer a large variety of solvers, including Krylov-
space methods and all of the commonly used preconditioners, including highly effective
algebraic multigrid preconditioners available through the packages hypre [Falgout
et al. 2005; 2006] and ML [Gee et al. 2006].

5. POSTPROCESSING

Once a solution to the linear system has been computed, finite element applications
typically perform a number of postprocessing steps such as generating graphical out-
put, estimating errors, adaptively refining the mesh, and interpolating the solution
from the old to the new mesh. In the following, we will briefly comment on the latter
three of these points. We will not discuss generating graphical output—storing and
visualizing tens or hundreds of gigabytes of data resulting from massively parallel
computations is nontrivial and the realm of specialized tools not under consideration
here.

5.1. Adaptive Refinement of Meshes

Once a solution has been computed, we frequently want to adjust the mesh to better
resolve the solution. In order to drive this adaptation, we need to (i) compute error
indicators for each of the cells in the global mesh, and (ii) determine which cells to
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refine, for example, by setting a threshold on these error indicators, which a cell should
be refined (and similarly for coarsening).

The literature contains a large number of methods to estimate the error in finite
element solutions (see, e.g., Verfiirth [1994], Ainsworth and Oden [2000], and Bangerth
and Rannacher [2003] and the references cited in these publications). Without going
into detail, it is natural to let every processor p compute error indicators for the cells
Tf;c it owns. The primary complication from the perspective of parallelization is that
in order to compute these indicators, we not only have to have access to all degrees of

freedom located on cells in Tﬁc, that is, to the elements of the solution vector indexed

by 77, , but frequently also solution values on all neighboring cells in order to compute
jump residuals at the interfaces between cells. In other words, we need access to
solution vector elements indexed by T lr while by default every processor only stores
solution vector elements it owns, that is, Z/ . Before computing error indicators, we
therefore have to import the missing elements (and preferably only those since, in
particular, we cannot expect to store the entire solution vector on each processor). Both
PETSc and Trilinos support this kind of operation.

Once error indicators e; > 0,7 € [0, Neeis), where Nees = #U Tloc, have been com-
puted, we have to decide which cells to refine and coarsen. A typ1cal strategy is to
refine and coarsen certain fractions o,, a. € [0, 1] of all cells. To do that, we need to
compute thresholds 6,, 6. so that, for example, #{i : ¢; > 6,} = &, Nceps. On a single
processor, this is easily achieved by sorting the e; according to their size and choosing
that error indicator as the threshold 6, corresponding to position o, N, though it is
also possible to find this threshold without completely sorting the set of indicators e;.
This task can be performed using the algorithm commonly referred to as nth_element,
which can be implemented with average linear complexity, and is, for example, part
of the C++ standard library [Stroustrup 1997]. On the other hand, nth_element does
more than we need since it also shuffles the elements of the input sequence so that
they are ordered relative to the nth element we are seeking.

In distributed parallel computations, no single processor has access to all error
indicators. Consequently, we could use a parallel nth_element algorithm (see, e.g.,
Tikhonova et al. [2005]). We can, however, avoid the partial sorting step by using the
distributed algorithm outlined in Figure 5. The algorithm computes the threshold 6 to
an accuracy €. For practical reasons, we are not usually interested in very high accu-
racy for these thresholds and typically set € so that the while-loop terminates after, for
example, at most 25 iterations. Since the interval in Which 6 must lie is halved in each
iteration, this corresponds to a relative accuracy of -1 55 ~ 3 X 10-8. The compute time
for the algorithm with a fixed maximal number of iterations is then O(N,ep5/ P log, P),
where the logarithmic factor results from the global reduce and broadcast operations.
Furthermore, the constant in this complexity can be improved by letting each

processor not only compute the number of cells nl/ 2 = #i:e) >m= —(b + e)}, but

also nt = #{i : e > 1(b +e)} and ny'" = #{i : e > 3(b + e)}, thereby obviating the
need for any commumcatlon in the next 1terat10n (because the data needed in the
next iteration is already available) and cutting the number of communication steps in
half. This procedure can of course be repeated to reduce the number of communication
steps even further, at the expense of larger numbers of variables n; sent to processor
0 in the reduction step. Note that the combination of MPI_Reduce and MPI_Bcast could
be replaced by MPI_Allreduce as done in Burstedde et al. [2008b, Section 3.1].

In actual finite element computations, the algorithm as stated turns out to not be
very efficient. The reason for this is that for practical problems, error indicators e;
are often scattered across many orders of magnitude, with only large e¢;. Consequently,
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bP = mineP, eP = maxeP compute local min and max
{b, —e} = MPI_Reduce ({b?, —eP}, MPI.MIN)  compute global min and max on processor 0
while (e — b] > ¢)
if (p==0) then master processor
MPI_Bcast ({b, e}, 0 — all) broadcast current interval
m = %(b +e) compute interval split point
ne = #{i: el >m} count local elements greater than m
n¢ =MPI_Reduce (n;, MPI_.SUM) count total number of elements
if (n¢ > aN) then {b, e} = {b,m} adjust interval
else {b,e} = {m,e}
else worker processor
MPI Bcast ({b, e}, 0 — all) receive current interval
m= %(b +e) compute interval split point
ny = #{i: el > m} count local elements greater than m
MPI_Reduce (n;, MPI_SUM) accumulate total number of elements on proc. 0
endif
endwhile
return § = m return threshold

Fig. 5. Pseudocode for determining a threshold 6 so that approximately « N elements of a vector (e; )i]\i 61
satisfy e; > 6. Each processor only stores a part e? of n? elements of the input vector. The algorithm runs on
each processor p, 0 < p < P. This algorithm is a variant of the parallel binary search described in Burstedde
et al. [2008b].

reducing the interval to 1% of its original size does not accurately determine a useful
threshold value 6. This problem can be avoided by using a larger number of iterations. A
better alternative is to exploit the fact that the numbers loge; are much more uniformly
distributed than e;; one can then choose m = exp [%(logb + loge)] = /be. We use this
modification in our code if b > 0, with at most 25 iterations.

The algorithm outlined above computes a threshold so that a certain fraction of the
cells are refined. A different strategy often used in finite element codes is to refine those
cells with the largest indicators that together make up a certain fraction «e of the total
error e = » ; e;. This is easily achieved with minor modifications when determining r,.
In either of these two cases, once thresholds 6, 6, have been computed in this way, each
processor can flag those among its cells T}, whose error indicators are larger than 6,
or smaller than 6, for refinement or coarsening, respectively.

5.2. Transferring Solutions between Meshes

In time-dependent or nonlinear problems, it is important that we can carry the solution
of one time step or nonlinear iteration from one mesh over to the next mesh that we
obtain by refining or coarsening the previous one. This functionality is implemented in
the deal.II class SolutionTransfer. It relies on the fact that after setting refinement
and coarsening flags, we can determine exactly which cells will be refined and which
will be coarsened (even though these sets of cells may not coincide with the ones actually
flagged, e.g., because the triangulation has to respect the 2:1 mesh balance invariant).

Since the solution transfer is relatively trivial if all necessary information is available
locally, we describe the sequential algorithm first before discussing the modifications
necessary for a scalable parallel implementation. To this end, let x*,i = 1---1I be the
vectors that we want to transfer to the new mesh. Then the sequential algorithm begins
as follows.

—On every terminal (active) cell K that will not be coarsened, collect the values x|k
of all degrees of freedom located on K. Add the tuple (K, {x*| K}{:l) to a list of such
tuples.
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—On every nonterminal cell K that has 27 terminal children K,,c = 1---2¢ that will
be coarsened, interpolate or project the values from the children onto K and call the
result x*|g. Add the tuple (K, {x*| K}iI 1) to a list of such tuples.

Next refine and coarsen the triangulation, enumerate all degrees of freedom on the
new mesh, resize the vectors ' to their correct new sizes and perform the following
actions:

—On every terminal cell K, see if an entry for this cell exists in the list of tuples. If so,
which will be the case for all cells that have not been changed at all and those whose
children have been deleted in the previous coarsening step, extract the values of the
solution x’|x on the current cell and copy them into the global solution vectors x*.

—On all nonterminal cells K for which an entry exists in the list of tuples, that is, those
that have been refined exactly once, extract the local values x’|x, interpolate them to
the children x’|g.,c = 1---2%, and copy the results into the global solution vectors x’.

By ordering the list of tuples in the same way as we traverse cells in the second half
of the algorithm, we can make both adding an element to the list and finding tuples in
the list an O(1) operation.

This algorithm does not immediately work for parallel distributed meshes, first be-
cause we will not be able to tell exactly which cells will be refined and coarsened without
communication (a precondition for the first part of the algorithm), and second because,
due to repartitioning, the cells we have after refinement on processor p may not be
those for which we stored tuples in the list before refinement on the same processor.

In our parallel distributed re-implementation of the SolutionTransfer class, we
make use of the fact that the master version of the mesh is maintained by p4est
and stored independently of the deal.II object that represents the mesh including
all auxiliary information. Consequently, after deal.II notifies p4est of which cells to
refine and coarsen, and p4est performs the necessary mesh modification including the
2:1 mesh balance (see Section 2.3), we have the opportunity to determine which cells
have been refined and coarsened by comparing the modified, p4dest-maintained master
version of the mesh and the still unchanged mesh data in deal.II. This allows us to
create the list of tuples in the first part of the algorithm outlined above. In a second
step, deal.II calls p4est to repartition the mesh to ensure a load-balanced distribution
of terminal cells; in this step, p4est allows attaching additional data to cells that are
transferred point-to-point from one processor to another. In our case, we attach the
values x'|g. After partitioning the mesh and re-building the deal.Il triangulation, we
query p4est for the stored values on the machine the cell now belongs to. This allows
us to perform the second part of the algorithm like in the serial case, without adding
communication to deal.IT itself.

6. MACHINE ARCHITECTURE CONSIDERATIONS

In the description of algorithms and data structures in this article, we have assumed a
rather abstract hardware implementation of a parallel machine whose processor cores
are coupled through MPI. In particular, we have not taken into consideration that
some MPI processes may be “closer” than others (for example because they run on
different cores of the same processor). Neither did we consider that actual program
speed depends significantly on data layout, for example so that we can utilize on-
chip vector instructions, or employ off-chip support through general-purpose graphics
processing units (GPUs) that is present in a number of high-end machines today.
While our numerical results in Section 7 show that this omission does not affect the
scalability of our approach, it may affect the performance. Consequently, it would be
naive to ignore these considerations given that the “flat” MPI model cannot be expected
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to work on future machines with millions of processor cores. This notwithstanding, we
believe that the approach we have chosen is appropriate for the vast majority of large
machines available today and in the near future. We will discuss this in the following
subsections for hybrid computing, GPU acceleration, and vectorization—today’s three
primary directions pointing beyond the “flat”, homogeneous MPI model.

Hybrid Computing. Hybrid computing refers to the use of multiple processor cores
with shared memory that form the nodes of a distributed memory machine. In the rest
of this paper, we have assumed that each core hosts a separate, single-threaded MPI
process. One might imagine that it is more efficient to have a single, multithreaded
MPI process per machine. In fact, our implementation in deal.II can be used in this
way since many time-consuming operations (such as assembly and error estimation)
are already parallelized using the Threading Building Blocks [Reinders 20071, or could
relatively easily be parallelized (e.g., the creation of sparsity patterns or of constraints).
However, there are practical obstacles to this approach. For example, MPI implemen-
tations tie processes to individual cores, ensuring fast access to data that is stored
in processor-adjacent memory whenever possible. On the other hand, multithreaded
processes have to deal with the non-uniform memory access latency if data is stored in
the same address space but in memory chips adjacent to a different processor; starting
tasks on new threads almost always also leads to higher cache miss rates. The biggest
obstacle, however, is that while our methods scale very well in the “flat” MPI model,
they would only scale well in a hybrid model if all parts support multithreaded op-
eration. Unfortunately, this is not the case: in our numerical experiments, we spend
80-90% of the compute time in solvers provided by either PETSc or Trilinos, and while
those scale well through MPI, neither supports hybrid models. In other words, utilizing
deal.II’s multithreading capabilities will only make sense once linear solver packages
can also do so.

GPU Support. While graphics processing units are poorly suited to accelerate the
complex and if-then-else laden integer algorithms that form the focus of this arti-
cle, they are ideally suited to accelerate the floating-point-focused linear solvers that
consume the bulk of the compute time in our numerical examples. Again, we have
not discussed this interaction in more detail since we use external packages as black
box solvers to solve our linear systems. Once these packages learn to use GPUs, our
programs will benefit as well.

Vectorization and Streaming. Most CPUs today also have vector operations, though
on a finer scale than GPUs. Their use is, again, primarily confined to the external solver
packages. At the same time, vectorization is only possible if data can be streamed into
processors, that is, if data is arranged in memory in a linear fashion. deal.II goes
to great lengths to arrange “like” data in linear arrays rather than scattered data
structures, and in the same order in which cells are traversed in most operations;
consequently, it has been shown to have a relatively low cache miss rate compared to
other scientific computing applications (see, e.g., the comparison of SPEC CPU 2006
programs—including 447 .dealII—in Henning [2007]). Similarly, enumerating degrees
of freedom in such a way that vector entries corresponding to neighboring degrees
of freedom are adjacent in memory ensures low cache miss rates; not by coincidence,
p4est’s use of a space filling curve to enumerate cells ensures this property very well, as
does our algorithm to assign degrees of freedom to individual processors (see Remark 2).

In summary, the current lack of support for hybrid and GPU-accelerated program-
ming models in widely used external solver packages prevents us from using such
approaches in our implementation. At the same time, several of the algorithms dis-
cussed here can efficiently be parallelized using multiple threads once this becomes
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Fig. 6. Two-dimensional scalar Laplace example. Left: Solution « on the unit square. Right: Adapted mesh
at an early stage with 7,069 cells. The partition between 16 processors is indicated by colors.

necessary. Finally, our numerical results in Section 7 show that our methods scale well
on a contemporary supercomputer and that the limits of the “flat” MPI model have not
yet been reached.

7. NUMERICAL RESULTS

In the following, we will present two test cases that are intended to demonstrate
the scalability of the algorithms and data structures discussed above. The first test
case solves a 2d Laplace equation on an sequence of adaptively refined meshes. The
relative simplicity of this example implies that the solver and preconditioner for the
linear system—while still the most expensive part of the program—are not completely
dominating. Consequently, we will be able to better demonstrate the scalability of the
remaining parts of the program, namely the algorithms discussed in this article. The
second test case investigates the solution of a viscous thermal convection problem
under the Boussinesq approximation.

The programs that implement these test cases will be made available as the step-40
and step-32 tutorial programs of deal.II, respectively. Tutorial programs are exten-
sively documented to demonstrate both the computational techniques used to solve a
problem as well as their implementation using deal.II’s classes and functions. They
are licensed in the same way as the library and serve well as starting points for new
programs.

The computational results shown in the following subsections were obtained on
the Ranger supercomputer at the Texas Advanced Computing Center (TACC) at The
University of Texas at Austin. Some computations and the majority of code testing
were done on the Brazos and Hurr clusters at the Institute for Applied Mathematics
and Computational Science at Texas A&M University.

7.1. A Simple 2d Laplace Test Case

The first test case solves the scalar Laplace equation, —Au = f on the unit square
Q = [0, 1]2. We choose homogeneous boundary values and

_J1 ifxg > 3 + 1 sin(4mxy),
f&®= { -1 otherwise.

The discontinuity in the right-hand side leads to a sinusoidal line through the domain
along which the solution u(x) is nonsmooth, resulting in very localized adaptive mesh
refinement. The equations are discretized using biquadratic finite elements and solved
using the conjugate gradient method preconditioned by the Boomer AMG implementation
of the algebraic multigrid method in the hypre package [Falgout et al. 2005, 2006]. We
call hypre through its interface to PETSc. Figure 6 shows the solution along with an
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Fig. 7. Two-dimensional scalar Laplace example. Scaling results on 256 (left) and 4,096 processors (right)
for a sequence of successively refined grids. The various categories of wall clock times are explained in the
text. The labeled categories together account for more then 90% of the total wall clock time of each cycle.
In both graphs, the thick, dashed line indicates linear scaling with the number of degrees of freedom. Each
processor has more than 10° degrees of freedom only to the right of the vertical red line. Both the small
number of elements per processor left of the vertical line and small absolute run times of a few seconds make
the timings prone to jitter.

adaptive mesh at an early stage of the refinement process containing 7,069 cells and a
partition onto 16 processors.

To demonstrate the scalability of the algorithms and data structures discussed in this
paper, we solve the Laplace equation on a sequence of meshes each of which is derived
from the previous one using adaptive mesh refinement and coarsening (the mesh in
Figure 6 results from three cycles of adaptation). For a given number of processors, we
can then show the wall clock time required by the various operations in our program as
a function of the number of degrees of freedom on each mesh in this sequence. Figure 7
shows this for 256 and 4,096 processors and up to around 1.2 x 10° degrees of freedom.?
While we have measured wall clock times for a large number of parts of the program,
the graph only labels those seven most expensive ones that together account for more
than 90% of the overall time. However, as can be seen, even the remaining parts of the
program scale linearly. The dominant parts of the program in terms of their wall clock
time are the following.

—Linear Solver. Setting up the algebraic multigrid preconditioner from the distributed
finite element system matrix, and solving the linear system with the conjugate gra-
dient method including the application of the AMG preconditioner.

—Copy to deal.II This is the operation that recreates the mesh in deal.II’s own
data structures from the more compressed representation in p4est. The algorithm is
shown in Figure 1.

—Error Estimation. Given the solution of the linear system, compute and communicate
error indicators for each locally owned cell, compute global thresholds for refinement
and coarsening, and flag cells accordingly (see the algorithm in Figure 5).

—Assembly. Assembling the contributions of locally owned cells to the global system
matrix and right-hand-side vector. This includes the transfer of matrix and vector
elements locally computed but stored on other processors.

—Sparsity Pattern. Determine the locations of nonzero matrix entries as described in
4.1.

2Note that the next refinement would yield a number of degrees of freedom that exceeds the range of the
32-bit signed integers used by hypre for indexing (PETSc can use 64-bit integers for this purpose). Unfor-
tunately, Trilinos’ Epetra package that we use in our second numerical test case suffers from the same
limitation.
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Fig. 8. Two-dimensional scalar Laplace example. Strong scaling results for a refinement level at which
meshes have approximately 52 million (left) and 335 million unknowns (right), for up to 16,384 processors.
The thick, dashed line indicates linear scaling with the number of processors. Each processor has more than
105 degrees of freedom only to the left of the vertical red line.

—Init Matrix. Exchange between processors which nonlocally owned matrix entries
they will write to in order to populate the necessary sparsity pattern for the global
matrix. Copy intermediate data structures used to collect these entries into a more
compact one and allocate memory for the system matrix.

—Coarsen and Refine. Coarsen and refine marked cells, and enforce the 2:1 cell balance
across all cell interfaces (this includes the largest volume of communication within
pdest; see Section 2.3).

The results presented in Figure 7 show that all operations appear to scale linearly
(or better) with the number of degrees of freedom whenever the number of elements
per processor exceeds 10°. For smaller element counts per processor, and run times
of under a few seconds, most operations behave somewhat irregularly—in particular
in the graph with 4,096 processors—which can be attributed to the fact that in this
situation there is simply not enough numerical work to hide the overhead and inherent
randomness caused by communication. This behavior is most marked in the Copy-to-
deal.II and p4est re-partitioning operations. (The scalability of the latter has been
independently demonstrated in Burstedde et al. [2010].)

While the results discussed above show that a fixed number of processors can solve
larger and larger problems in a time proportional to the problem’s size, Figure 8 shows
the results of a “strong” scaling experiment. Here we select two refinement levels that
result in roughly 52 and 335 million unknowns, respectively, and compare run times
for different numbers of processors. Again, above roughly 10° elements per processor,
we observe nearly ideal scalability of all algorithms discussed in this article.

7.2. A Thermal Convection Test Case

The second test case considers solving the equations that describe convection driven by
buoyancy due to temperature variations. We model this phenomenon involving veloc-
ity, pressure, and temperature variables u, p, T' using the Boussinesq approximation
[McKenzie et al. 1974; Schubert et al. 2001],
-V .-(2ne(w))+Vp=—pBpTg,
V.-u=0,
oT
W+H~VT—V-KVT =y.

Here, c(u) = %[(Vu) + (Vu)T] is the symmetric gradient of the velocity, 7 and « denote
the viscosity and diffusivity coefficients, respectively, which we assume to be constant in
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Fig. 9. Solution of the mantle convection test case at two instants in time during the simulation. Mesh
adaptation ensures that the plumes are adequately resolved.

space, p is the density of the fluid, g is the thermal expansion coefficient, y represents
internal heat sources, and g is the gravity vector, which may be spatially variable.
These equations are posed on a spherical shell mimicking the earth mantle, that is,
the region above the liquid iron outer core and below the solid earth crust. Dimensions
of the domain, boundary and initial conditions, and values for the physical constants
mentioned above can be found in the description of the step-32 tutorial program that
implements this test case. Typical solutions at two time steps during the simulation
are shown in Figure 9.

We spatially discretize this system using Qd x @1 x @ elements for velocity, pressure
and temperature elements, respectively, and use a nonlinear artificial viscosity scheme
to stabilize the advection equation for the temperature. We solve the resulting system
in time step n by first solving the Stokes part,

(5# o) () = (56). o

and then using an explicit BDF-2 time stepping scheme to obtain the discretized tem-
perature equation at time step n:

(M +a"Ap)T" = F}. (2)

Here, F[;, F, F} are right hand side vectors that depend on previously computed
solutions. «” is a coefficient that depends on the time step length. Ay is a matrix that
results from natural and artificial diffusion of the temperature and M is the mass
matrix on the temperature space.

We solve the Stokes system (1) using Flexible-GMRES and the Silvester-Wathen
preconditioner [Silvester and Wathen 1994]

A/ B
0 S;t

where A , S5t » are approximations of the inverse of the elliptic stress operator Ay in
the Stokes system and the pressure Schur complement S = BT A, 1B, respectively. We

implement A‘ by solving the corresponding linear system using BiCGStab and the ML
1mplementat10n [Gee et al. 2006] of the algebraic multigrid method as preconditioner.
Spt » is obtained by solving a linear system with the pressure mass matrix, using an
ILU decomposition of this matrix as a preconditioner. This scheme resembles the one
also chosen in Geenen et al. [2009].

The temperature system (2) is solved using the CG method, preconditioned by an in-
complete Cholesky (IC) decomposition of the temperature system matrix. Note that the
ILU and IC preconditioners are implemented in block Jacobi fashion across the range
of different processors, that is, all coupling between different processors is neglected.
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Fig. 10. Thermal convection example. Weak scaling with 512 processors (left) and strong scaling with
roughly 22 million unknowns (right). In both graphs, the thick, dashed line indicates optimal scaling. In the
left graph, processors have more than 105 degrees of freedom to the right of the vertical red line; in the right
graph to the left of the vertical red line.

As expected for simulations of reasonably realistic physics, the resulting scheme is
heavily dominated by the linear solver, which has to be invoked in every time step
whereas the mesh and DoF handling algorithms are only called every tenth time step
when the mesh is changed. On the other hand, the highly unstructured mesh and the
much larger number of couplings between degrees of freedom for this vector-valued
problem impose additional stress on many parts of our implementation.

Figure 10 shows scaling results for this test case. There, we time the first time
step with ¢, > ¢* = 10° years for a number of different computations with a variable
number of cells (and consequently a variable number of time steps before we reach ¢*).
The “weak” scaling shown in the left panel indicates that all operations scale linearly
with the overall size of the problem, at least if the problem is sufficiently large. The
right panel demonstrates strong scalability. Here, scalability is lost once the number of
degrees of freedom per processor becomes too small; this happens relatively soon due
to the small size of the problem shown here (22 million unknowns overall).

8. CONCLUSIONS

In this article, we present a set of algorithms and data structures that enable us
to parallelize all computations associated with adaptive finite element methods. The
design of our methods is based on a complete distribution of all data structures and
avoiding global communication wherever possible in favor of scatter/gather and point-
to-point operations. However, the key to making this work in practice is not only to
distribute storage but also to think about the details of finite element applications—
such as constraints on degrees of freedom or sparsity patterns—and in particular what
kind of information each processor needs. The question of what processors need to
know about what happens on ghost cells turns out to be crucial to the correctness of
resulting programs.

The numerical results presented in Section 7 demonstrate that we can achieve op-
timal scalability for those components of the two finite element applications that are
within the scope of this article. In particular, we could show that all operations scale
linearly with the overall problem size (with fixed number of processors) and with the
number of processors (with fixed problem size, at least for large enough problems).
While we have only shown results for up to 16,384 processors, these scaling results
indicate that the methods presented here are likely to scale significantly further once
the required technology for the solution of even larger problems becomes available in
linear solver packages.
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Given the complexity and size of typical finite element libraries, it must necessarily be
a significant concern to convert such codes to support massively parallel computations.
In Section 2, we lay out one avenue to perform such a conversion. There, we show
how an existing finite element library can be extended to support fully distributed
meshes by using an external scalable adaptive-mesh provider which we refer to as
an “oracle”. This oracle has to answer a small number of relatively simple questions,
and to encapsulate mesh modification directives for refinement and coarsening, 2:1
mesh balance, and re-partitioning. In our case, the interface between the deal.II
library and the oracle p4est has only around 600 lines of code (lines of C++ code
with a semicolon on it), and the entire extension of deal.II to support distributed
parallel computations required us to write only approximately 10,000 lines of code
(some 2,000 of which have a semicolon, the majority of the rest being comments and
class or member documentation). The external p4est implementation contains about
25,000 lines of code. These numbers have to be compared with the overall size of the
deal.II library of currently approximately 540,000 lines and its average growth per
month of 4,000 lines. A major benefit of this approach is that it allows us to re-use
almost all of the existing code that has been validated for years.

Generally, we believe that our implementation of the methods introduced here can
be used with relative ease by applications developers. For example, the step-40 tutorial
program used in Section 7.1 has only around 150 lines of code, which can be compared
to the 125 lines in its sequential predecessor step-6 upon which it is based. As a con-
sequence, we believe that our work not only shows the efficiency of our approach with
respect to scaling to very large problems, but also the possibility of implementing these
methods efficiently with respect to code complexity. We also hope that this article may
serve as a guideline to realize dynamic mesh parallelization within other numerical
software packages, and thus can help making true scalability available to an even
broader range of scientists.

The results of our work are available under an open source license starting with
release 7.0 of the deal.II library, as well as through two extensively documented
tutorial programs—step-32 and step-40—that explain the use of these techniques and
their implementation.
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