
3D COMPRESSIBLE MELT TRANSPORT WITH MESH ADAPTIVITY

JULIANE DANNBERG1,2, TIMO HEISTER3

1 DANNBERG@MATH.TAMU.EDU, DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, MAILSTOP 3368,
COLLEGE STATION, TX 77843-3368, USA

2 GEODYNAMIC MODELING, GFZ GERMAN RESEARCH CENTRE FOR GEOSCIENCES, POTSDAM, GERMANY
3 HEISTER@CLEMSON.EDU, MATHEMATICAL SCIENCES, CLEMSON UNIVERSITY, SC 29634-0975, USA

ABSTRACT. Melt generation and migration are important processes for the evolution of the Earth’s interior and impact the
global convection of the mantle. While they have been the subject of numerous investigations, the typical time and length-
scales of melt transport are vastly different from global mantle convection, which determines where melt is generated. This
makes it difficult to study mantle convection and melt migration in a unified framework. The equations that describe coupled
Stokes-Darcy flow have been derived a long time ago and they have been successfully implemented and applied in numerical
models. However, modeling magma dynamics poses the challenge of highly non-linear and spatially variable material prop-
erties, in particular the viscosity. In addition, previous models neglected the individual compressibilities of the solid and the
fluid phase. However, experiments have shown that the melt density change from the depth of melt generation to the surface
leads to a volume increase of up to 20%. Considering these volume changes in both phases also ensures self-consistency
of models that strive to link melt generation to processes in the deeper mantle, where the compressibility of the solid phase
becomes more important. Here, we describe our extension of the finite element mantle convection code ASPECT that adds
equations describing the behavior of silicate melt percolating through and interacting with a viscously deforming host rock.
We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation
of energy. This approach includes both melt migration and melt generation with the accompanying latent heat effects. Ap-
plying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in
mesh cells where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without
melt. Together with a high-performance, massively parallel implementation, this allows for high resolution, 3d, compress-
ible, global mantle convection simulations coupled with melt migration. We evaluate the functionality and potential of this
method using a series of benchmarks and model setups relevant for applications, compare results of the compressible and
incompressible formulation and show the effectiveness of adaptive mesh refinement when applied to melt migration. Our
model of magma dynamics provides a framework for modeling processes on different scales and investigating links between
processes occurring in the deep mantle and melt generation and migration. This approach could prove particularly useful
applied to modeling the generation of komatiites or other melts originating in greater depths. The ASPECT code, including
all presented modifications, is available online under an Open Source license1

1. INTRODUCTION

Mantle convection and melt migration are important processes for our understanding of the physics of the Earth’s
interior and how it is linked to observations at the surface. Both processes have been studied in much detail individ-
ually, however, most studies of solid-state creep in the Earth’s mantle such as in mantle plumes, subduction zones or
mantle convection in general either do not consider melting and melt migration, or treat it in a simplified way, only
computing the melting rate and extracting the melt from the model, neglecting [e.g. 32, 2, 11, and references therein] or
approximating [25, 29, 8, 20] the physics of two-phase flow and the effects of compaction. Previous modeling studies
of magma dynamics comprise a wide range of applications, such as solitary waves [31], channeling instabilities [38],
rifting [28], mid-ocean ridges [33, 14, 15], melt shear bands in partially molten rocks [34, 13] and magma dynamics
in a host rock undergoing both fracture and flow [17]. However, these models often do not include the feedback of the
melt on the solid mantle flow, they have only been carried out in two dimensions, and although they take into account
the compaction of the solid matrix by changes in melt fraction, they treat both individual phases as incompressible.

1

MAILTO:DANNBERG@MATH.TAMU.EDU
MAILTO:HEISTER@CLEMSON.EDU


2 J. DANNBERG, T. HEISTER

These simplifications are valid on small scales, but become more limiting when linking surface observation to the
deeper mantle and studying the interaction of mantle and magma dynamics in the context of larger-scale structures
such as mantle plumes, subduction zones, and mid-ocean ridges. Typical compressibilities of mantle melts are in a
range of 3.1 · 10−11 to 5.3 · 10−11Pa−1 [1, 21, 37, 26], implying that their volume can increase 7–11% per 100 km
they ascend from the melting region. This volume change is especially important for melt generated in greater depths,
such as komatiites.

Moreover, the geometry of geologic structures is not limited to two dimensions, examples being transform faults at
mid-ocean ridges, plate velocities and lateral variations in the thickness of the overlying plate when a mantle plume
impinges on the base of the lithosphere, and bent subduction zones or along-trench variations of oceanic crustal
thickness. The three-dimensional structure of these settings has implications for the processes of melt migration,
focusing and distribution of melt, and eventually the associated volcanism at the surface.

Nevertheless, several numerical challenges have prevented joint modeling of coupled magma and mantle dynamics
in three dimensions so far: (1) Melt migration and mantle convection occur on widely different time and length scales,
which makes it very difficult to study both processes together, as melt migration can only be resolved on a much higher
resolution and using smaller time steps. (2) Important material properties strongly depend on temperature, pressure
and in particular the porosity, leading for example to high viscosity contrasts of potentially more than 5 orders of
magnitude often on very small length scales, which poses a challenge for iterative solvers. (3) These dependencies of
the material parameters on the solution variables are strongly nonlinear, calling for advanced nonlinear solvers. All the
previous points combined make it impossible to study these processes without using advanced numerical techniques
and the ability to do large-scale parallel computations. We address these challenges in the following way:

(1) Adaptive mesh refinement allows us to refine the mesh where melt is present and viscosity contrasts are high,
and to use a coarser mesh in regions without melt, where velocities and gradients of material properties are
lower. For reaching the same accuracy overall fewer degrees of freedom and computational resources are
required compared to a model with uniform mesh.

(2) Parallelization of the code, scaling up to 10,000s of processors makes it possible to run models with several
tens of millions of degrees of freedom, allowing for large-scale models in three dimensions that still resolve
processes on the length scale of melt migration.

(3) We use an iterated IMplicit Pressure Explicit Saturation (IMPES) scheme to resolve the strong non-linearity
in the system, alternating the solution of the Stokes system and the advection systems until convergence is
reached. We employ a generalized minimal residual method with a Wathen style block preconditioner for the
Stokes part of the problem, allowing for high local and global viscosity contrasts.

The melt migration is integrated into the open source mantle convection code ASPECT [18, 4], which is based
on the deal.II finite element library ([5]). The massively parallel, adaptive computing capabilities of the underlying
deal.II library ([3]) enable the computations done for this paper.

Here, we present our extension of ASPECT that models coupled magma/mantle dynamics in two and three dimen-
sions, employing adaptive mesh refinement. It includes all of the terms of the original formulation of two-phase flow
of McKenzie [19], taking into account the compressibility of both individual phases, which makes this formulation
(hereafter called fully compressible formulation) consistent also for higher pressures. Moreover, energy conservation,
pressure-, temperature- and composition-dependent melt generation and latent heat effects are considered. We demon-
strate the correctness and accuracy of the code by showcasing several benchmarks and convergence tests (Sections 4.1
and 4.3). Moreover, we show the effectiveness of adaptive mesh refinement using a test case that features structures
expected in applications, but has an analytical solution (Sections 4.4). Finally, we present two- and three-dimensional
application cases in earth-like settings, including mantle plumes, global mantle convection and magmatic shear bands
(Sections 4.2, 4.5 and 4.6). The code used to generate these results is available online [9], and required input files,
data files, and scripts for creating the analytic solutions are provided in the Supplementary Material.
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TABLE 1. Explanation of some important symbols used in the paper.

Symbol Quantity Expression Unit
φ porosity volume fraction
pf fluid pressure pf = ps − pc

1−φ Pa
ps solid pressure ps = pf + pc

1−φ Pa
pc compaction pressure pc = (1− φ)(ps − pf ) Pa

pc = −ξ(∇ · us)
us solid velocity m/yr
uf fluid velocity uf = us − KD

φ (∇pf − ρfg) m/yr
ε̇ strain rate ε̇(us) = 1

2 (∇us +∇uTs ) 1/yr
η shear viscosity (solid) Pa s
ξ bulk viscosity (solid) Pa s
ηf shear viscosity (melt) Pa s
KD Darcy coefficient KD =

kφ
ηf

Pa

2. PROBLEM SETUP

2.1. Physical model. The original ASPECT mantle convection code [18] models the movement of solid mantle
material. These computations also allow for taking into account how partially molten material changes the material
properties and the energy balance through the release of latent heat. However, this does not include melt extraction or
any relative movement between melt and solid. Here, we adapt ASPECT to solve additional equations describing the
behavior of silicate melt percolating through and interacting with a viscously deforming host rock. This is implemented
based on the approach of [17] in the viscous limit, extended to a compressible formulation.

Our model includes two material phases: The solid matrix (denoted with index s) and the fluid melt phase (denoted
with index f ). The melt fraction φ defines averaged quantities X̄ out of solid (Xs) and fluid (Xf ) quantities:

X̄ = (1− φ)Xs + φXf .(1)

We start from the McKenzie equations, which are derived in Appendix A of [19]. The mass and momentum conserva-
tion for solid and fluid are:

∂

∂t
[ρfφ] +∇ · [ρfφuf ] = Γ,(2)

∂

∂t
[ρs(1− φ)] +∇ · [ρs(1− φ)us] = −Γ,(3)

φ (uf − us) = −KD (∇pf − ρfg) ,(4)

−∇ ·
[
2η

(
ε̇(us)−

1

3
(∇ · us)1

)
+ ξ(∇ · us)1

]
+∇pf = ρ̄g,(5)

where ρ is the density (with the index denoting solid or fluid phase), g is the gravitational acceleration, Γ is the melting
rate, and the other symbols are as given in Table 1. In order to eliminate the time derivatives, and under the assumption
that the flow field is in equilibrium (∂ρs,f/∂t = 0), we rewrite the first two equations to:

∂φ

∂t
+∇ · [φuf ] =

Γ

ρf
− φ

ρf
uf · ∇ρf ,(6)

−∂φ
∂t

+∇ · [(1− φ)us] = − Γ

ρs
− 1− φ

ρs
us · ∇ρs.(7)
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Now we can add (6) and (7) and get

∇ · [φuf + (1− φ)us] = Γ

(
1

ρf
− 1

ρs

)
− φ

ρf
uf · ∇ρf −

1− φ
ρs

us · ∇ρs.(8)

To eliminate the fluid velocity uf from the equations, we replace it by using Darcy’s law (Equation 4):

φuf = φus −KD (∇pf − ρfg)(9)

and get

∇ · us −∇ · [KD(∇pf − ρfg)] = Γ

(
1

ρf
− 1

ρs

)
− φ

ρf
us · ∇ρf +

KD

ρf
(∇pf − ρfg) · ∇ρf(10)

− 1− φ
ρs

us · ∇ρs.

Rearranging terms, we get

∇ · us −∇ ·KD∇pf −KD∇pf ·
∇ρf
ρf

= −∇ · (KDρfg)

+ Γ

(
1

ρf
− 1

ρs

)
(11)

− φ

ρf
us · ∇ρf −

1− φ
ρs

us · ∇ρs

−KDg · ∇ρf in Ω.

To avoid the density gradients, we can assume that the change in density (for both the solid and the fluid phase) is
dominated by the change in static pressure, which can be written as ∇ps,f ≈ ∇pstatic ≈ ρs,fg. This finally allows us
to write

(12)
1

ρs,f
∇ρs,f ≈

1

ρs,f

∂ρs,f
∂ps,f

∇ps,f ≈
1

ρs,f

∂ρs,f
∂ps,f

∇pstatic ≈
1

ρs,f

∂ρs,f
∂ps,f

ρs,fg = κs,fρs,fg,

where κs,f are the compressibilities of solid and fluid, respectively. We can now replace Equation (11) by

∇ · us −∇ ·KD∇pf −KDκfρf∇pf · g = −∇ · (KDρfg)(13)

+ Γ

(
1

ρf
− 1

ρs

)
− (us · g) [φκfρf + (1− φ)κsρs]

−KDκfρ
2
fg · g.

The original McKenzie formulation of the momentum equation (Equation 5, Equations (A16) - (A18) in [19]) only
contains the fluid pressure. However, analogous to [17] we can define a new variable, the compaction pressure, as

pc = (1− φ)(ps − pf ).

The viscous constitutive law for the compaction stress in the host rock (see [17], viscous limit) is

pc = −ξ(∇ · us),(14)
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which allows us to replace the compaction term in (5) by the compaction pressure:

−∇ ·
[
2η

(
ε̇(us)−

1

3
(∇ · us)1

)]
+∇pf +∇pc = ρ̄g.(15)

The final set of equations are (15), (13) and (14):

−∇ ·
[
2η

(
ε̇(us)−

1

3
(∇ · us)1

)]
+∇pf +∇pc = ρ̄g,

∇ · us −∇ ·KD∇pf −KDκfρf∇pf · g = −∇ · (KDρfg)

+ Γ

(
1

ρf
− 1

ρs

)
− (us · g) [φκfρf + (1− φ)κsρs]

−KDκfρ
2
fg · g,

∇ · us +
pc
ξ

= 0.

The equations are solved for the solid velocity us, the fluid pressure pf , and the compaction pressure pc. Without
the presence of melt (φ = 0), the equations reduce to the standard compressible Stokes system used in ASPECT. For
the material properties used in the equations, there are many different parameterizations provided in the literature, so
in ASPECT these material description can be set in a material model module that can be easily modified by the user,
and we will use different formulations for the various models presented in this manuscript. Through the permeability,
which is often parametrized as kφ = k0φ

n, the Darcy coefficient KD depends on the solution variables, as well as
the shear, and compaction viscosities η and ξ, which can depend on the porosity, temperature, pressure, strain rate
and composition. Common formulations for the dependence on porosity are η = (1− φ)η0e

−αφφ with αφ ≈ 25...30
and ξ = η0ζφ

−n with n ≈ 1 and ζ ≈ 1...10 [e.g. 14, 15, 17, and references therein]. These dependencies introduce
strong non-linearities in the equations, which have to be considered when solving the system. Note that we use a
three-field instead of a two-field system of equations here, based on the results of previous studies [22, 23] showing
that the construction of a uniform preconditioner with respect to the model parameters is difficult for the two-field
formulation, while preconditioners are less sensitive to these parameters for the three-field problem.

We use Dirichlet boundary conditions for the velocity and Neumann boundary conditions for the fluid pressure:

us = f1 on ∂Ω,(16)
∇pf = f2 on ∂Ω.(17)

Prescribing the lithostatic pressure gradient f2 = ρsg leads to melt flowing in only due to variations in the dynamic
pressure, whereas f2 = ρfg together with f1 · ~n = 0 leads to no in- and outflow of melt or solid. Arbitrary melt fluxes
can be prescribed in addition to these options. Note that the compatibility condition implies

∫
Ω
pc
ξ dx = 0.

Here, we do not use the visco-elasto-plastic rheology of the Keller et al. [17] formulation. Hence, we do not
consider the elastic deformation terms that would appear on the right hand side of Equation 15 and Equation 14 and
that include the elastic and compaction stress evolution parameters ξτ and ξp. Moreover, our viscosity parameters η
and ξ only cover viscous deformation instead of combining visco-elasticity and plastic failure.

In addition to the previously derived conservation equations for total mass and momentum (Equations 13 – 15),
melt transport requires an advection equation that governs the evolution of the porosity field φ and an equation for the
conservation of energy. Under the assumption of equilibrium (∂ρs,f/∂t = 0) we can write Equation 3 as:

ρs
∂(1− φ)

∂t
+∇ · [ρs(1− φ)us] = −Γ.(18)
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To bring this equation in the same form as the other advection equations in ASPECT, we replace the second term of
the equation by

∇ · [ρs(1− φ)us] = (1− φ) (ρs∇ · us +∇ρs · us)−∇φ · ρsus.
Then we use the same method as for the mass conservation and assume the change in density is dominated by the
change in static pressure. This finally allows us to use Equation 12 to replace∇ρs/ρs = κsρsg and write

(19)
∂φ

∂t
+ us · ∇φ =

Γ

ρs
+ (1− φ)(∇ · us + κsρsg · us).

In order to model melting and freezing of melt, we also need a solution for the temperature T and thus include an
energy conservation equation in our model that includes radiogenic heat production, shear heating, adiabatic heating,
and release and consumption of latent heat of melting/freezing:

ρsCp

(
∂T

∂t
+ us · ∇T

)
−∇ · k∇T = ρsH

+ 2η (ε̇s : ε̇s)(20)

+ αT (us · ∇ps)
+ T∆S Γ,

with the shear strain rate ε̇s = ε̇(us)− 1
3 (∇·us)1. This formulation assumes thermal equilibrium in the whole model

domain. As our emphasis is on the mechanical modeling, we do not include the effect of melt migration on the energy
equation – except for the latent heat of melting and freezing T∆S Γ, which is determined by the entropy change
∆S upon melting the material completely and the melting rate Γ – and use phase-independent parameterizations for
thermal expansivity α, specific heat Cp and thermal conductivity k.

2.2. Weak formulation. To apply the finite element method we need to derive the weak form of the equations (13),
(14), and (15). We multiply by test functions, integrate over the domain, and integrate by parts:

(2ηε̇(us), ε̇(vs))−
2

3
η (∇ · us,∇ · vs) + (∇pf ,vs) + (∇pc,vs) = (ρ̄g,vs) ,(21)

(∇ · us, qf )− (∇ ·KD∇pf , qf )− (KDκfρf∇pf · g, qf ) = − (∇ · (KDρfg), qf )

+

(
1

ρf
− 1

ρs

)
(Γ, qf )(22)

− [φκfρf + (1− φ)κsρs] (us · g, qf )

−
(
KDκfρ

2
fg · g, qf

)
,

(∇ · us, qc) +

(
1

ξ
pc, qc

)
= 0.(23)

For the first equation we do integration by parts on the pressure terms (v = 0 on the boundary, so the boundary integral
vanishes):

(2ηε̇(us), ε̇(vs))−
(

2

3
η∇ · us,∇ · vs

)
− (pf ,∇ · vs)− (pc,∇ · vs) = (ρ̄g,vs) .(24)

We aim to include only material properties and not their derivatives in the equations, because these material descrip-
tions are provided by ASPECT’s user-defined plugins, which are designed to be easily comprehensible and extensible.
Thus, we integrate the first part on the right hand side of the second equation by parts (and pick up a boundary term):

(∇ · (KDρfg), qf ) = − (KDρfg,∇qf ) +

∫
Γ

qfKDρfg · ~n ds.
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We reverse the sign to later have a symmetric system:

− (∇ · us, qf ) + (∇ ·KD∇pf , qf ) + (KDκfρf∇pf · g, qf ) = − (KDρfg,∇qf )

+

∫
Γ

qfKDρfg · ~n ds

−
(

1

ρf
− 1

ρs

)
(Γ, qf )(25)

+ [φκfρf + (1− φ)κsρs] (us · g, qf )

+
(
KDκfρ

2
fg · g, qf

)
.

The second term on the left needs to be integrated by parts to get

(∇ ·KD∇pf , qf ) = − (KD∇pf ,∇qf ) +

∫
Γ

qfKD∇pf · ~n ds.

We can use the boundary integral to prescribe Neumann boundary conditions for pf (Equation 17), and with∇pf = f2
on the boundary we can move the boundary term to the right-hand side and get:∫

Γ

qfKDρfg · ~n ds−
∫

Γ

qfKD∇pf · ~n ds = −
∫

Γ

qfKD(ρfg − f2) · ~n ds.

For the third equation we also flip the sign to get

− (∇ · us, qc)−
(

1

ξ
pc, qc

)
= 0.(26)

Finally, the weak form reads:

(2ηε̇(us), ε̇(vs))−
(

2

3
η∇ · us,∇ · vs

)
−(pf ,∇ · vs)− (pc,∇ · vs) = (ρ̄g,vs) ,(27)

− (∇ · us, qf )− (KD∇pf ,∇qf )

+ (KDκfρf∇pf · g, qf ) = − (KDρfg,∇qf )

−
∫

Γ

qfKD(ρfg − f2) · ~n ds

−
(

1

ρf
− 1

ρs

)
(Γ, qf )(28)

+ [φκfρf + (1− φ)κsρs] (us · g, qf )

+
(
KDκfρ

2
fg · g, qf

)
,

− (∇ · us, qc)−
(

1

ξ
pc, qc

)
= 0.(29)

3. DISCRETIZATION AND LINEAR SOLVERS

Let (us, pf , pc) ∈ V u×V pf×V pc be the continuous solutions of the weak form (27)–(29). While V u =
[
H1

0 (Ω)
]d

is natural (we assume homogeneous boundary conditions for simplicity here), the choice for V pf and V pc require more
thought:

Unique solvability can only be expected with an additional normalization condition like
∫

Ω
pf = 0. If we assume

KD > 0 at all times, the natural space for the fluid pressure would be

V pf = H1
∗ (Ω) = H1(Ω) ∩ L2

∗(Ω),
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while for KD = 0 it reduces to L2
∗(Ω) = {q ∈ L2(Ω) |

∫
Ω
q = 0} and we experience a standard inf-sup condition

known from the Stokes equation.
Assuming ξ is finite, the constant in the compaction pressure pc is already uniquely determined due to (29), which

is essentially an L2 projection of the divergence into pc. The correct space here is V pc = L2(Ω).
We now discretize using conforming finite elements on quadrilaterals. An example for a stable discretization is

given by

V uh × V
pf
h × V

pc
h = Qdk ×Qk−1 ×Qk−1 ⊂ V u × V pf × V pc

with k ≥ 2 whereQk is the standard continuous space of tensor-product polynomials of degree k on the reference cell.
For k = 2 this results in the standard Taylor-Hood pair Qd2 ×Q1 for both velocity/pressure pairs. For the evolution of
the melt fraction, we achieve the best results when choosing elements of degree k − 1 for the porosity field. In this
case, the divergence of the velocity, which is contained in the advection equation as a source term, and the porosity
are in the same function space, and no interpolation is necessary. This guarantees that no melt is generated for a
divergence-free velocity field.

As we use stable finite elements, we do not have to impose a minimum permeability to avoid stability problems,
which has been done in previous finite element magma dynamics implementations. Instead, there is a continuous
transition to Stokes flow for zero porosity. Nevertheless, we have to limit the compaction viscosity for low porosities
to guarantee ξ < ∞, which would technically be possible by setting 1/ξ = 0 and, but would make Equations 28 and
29 linear dependent.

3.1. Linear System. Discretizing (27)–(29), we obtain the linear systemA BT BT

B N 0
B 0 K

Us

Pf
Pc

 =

F
G
0

 .(30)

Where N is the discretization of (KD∇pf ,∇qf ) in the incompressible case and K is given by
(

1
ξpc, qc

)
. For com-

pressible computations, N also contains the non-symmetric, third term from (28).
Based on the solver strategy in [23], we solve the block system (30) using flexible GMRES with the upper block

triangular preconditioner (preconditioned from the right)

P−1 =

A BT BT

0 X 0
0 0 Y

−1

.

For the Schur complement approximations we choose

X = BA−1BT + N ≈ 1

η
Mpf +KDLpf = X̂

and

Y = BA−1BT + K ≈ (
1

η
+

1

ξ
)Mpc = Ŷ,

where M∗ and L∗ are mass and stiffness matrices, respectively. While the preconditioner P is only defined for constant
coefficients this way, varying coefficients can be treated by pulling them into the integration for the mass and stiffness
matrices in X̂ and Ŷ.

The approximation for A−1 is done using an inner CG solver with a relative tolerance of 10−2 preconditioned by
Trilinos ML applied to the diagonal blocks of A. The Schur complement solves for X̂−1 and Ŷ−1 are also done using
CG preconditioned by a block ILU(0).
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4. NUMERICAL RESULTS

In the following, we will demonstrate the accuracy and versatility of our code at the example of a number of
benchmark cases and relevant setups for coupled magma/mantle dynamics applications.

4.1. Incompressible solitary wave benchmark. The support of non-linear solitary waves is a well-known feature of
the melt migration equations, resulting from the ability of the solid matrix to compact and dilate [7, 6] and this problem
has become a standard for benchmarking magma migration codes [31, 17, 27]. Moreover, solitary waves have been
suggested as a way of magma transport in the mantle, contributing to its episodic behavior [30, 39]. For 1D solitary
waves, assuming constant shear and compaction viscosities and using a permeability law in form of

kφ = k0φ
3, implying a Darcy coefficient KD(φ) =

k0

ηf
φ3,

and the non-dimensionalization

x = δx′ with the compaction length δ =

√
KD(φ0)(ξ +

4

3
η),

φ = φ0φ
′ with the background porosity φ0,

(us,uf ) = u0(us,uf )′ with the separation flux φ0u0 = KD(φ0)∆ρg,

t =
δ

u0
t′,

there is an analytical solution for the shape of the solitary wave, which can be written in the implicit form:

x(φ) = ±(A+ 0.5)

[
−2
√
A− φ+

1√
A− 1

ln

√
A− 1−

√
A− φ√

A− 1 +
√
A− φ

]
,

with A > 1 being the non-dimensional amplitude of the wave [7]. When scaled back to physical units, this equation
describes a wave with the amplitudeA/φ0 propagating with a fixed shape and constant phase speed c = u0(2A/φ0+1)
in a uniform porosity (φ = φ0) background. This is only valid in the limit of small porosity φ0 � 1.

For running this 1D benchmark problem, we use a pseudo-1-D profile with only a few elements in the horizontal
direction and a vertical extension of 400 m, chosen in such a way that the deviation from background porosity φ/φ0−
1 < 10−7. The resolution in this direction is varied as multiples of two of the coarsest grid with nz = 160, resulting
in a resolution of 2.5 m ... 0.3 m. We apply the negative phase speed of the solitary wave us = −c ez as velocity
boundary condition, so that the wave will stay at its original position while the background is moving, and set the end
time of the model to t = 6 · 106 years to allow the wave to propagate five times its wavelength. The parameters used
for the model are taken from Keller et al. [17] and are given in Table 2. Figure 1 displays the shape of the solitary wave
for both porosity and compaction pressure in the final time step for different models as well as the analytical solution.

We evaluate the accuracy of our model results by comparing both the phase speed and the shape of the wave after
the model runtime to this analytical solution. In order to do this, we calculate the deviation of the position of the
computed wave from the analytical solution (the phase shift ∆z). This is done by averaging over the the distance
between points with the same porosity in both solutions:

∆z =

A/φ0∑
φ=φ0

znum(φ)− zana(φ)

n
.

We can then use the phase shift to calculate the phase speed error

ec =

∣∣∣∣cnumcana
− 1

∣∣∣∣
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FIGURE 1. Shape of the solitary wave in porosity (left) and compaction pressure (right) for the
same resolution, but different wave amplitudes, still retaining the same non-dimensional problem,
after propagating five times its wave length. The porosity is scaled according to the wave amplitude
to make the plots comparable, and the end time of each model is chosen according to the phase
speed of the wave (proportional to the wave amplitude) with a model time of t = 6 · 106 years for
A = 0.01. Both porosity and compaction pressure illustrate how the model result approaches the
analytical solution with decreasing porosity.

and the porosity and pressure shape errors

eφ =
‖φnum(z)− φana(z −∆z)‖2

A
,

ep =
‖pcnum(z)− pcana(z −∆z)‖2

Ap
.

Figure 2 illustrates the time evolution of these errors for simulations with different resolutions and time step sizes.
After an initial transient stage, the shape and phase speed errors remain constant. This demonstrates that the code is
able to capture the expected behavior of a solitary wave that moves with a constant phase speed without changing its
shape. However, the errors do not seem to converge to zero with increasing resolution. This is expected, as solitary
waves are the solution of a simplified formulation of the porous flow equations that is only valid in the limit of small
porosity. To show how the solution depends on the amplitude of the wave A and the background porosity φ0, we
performed a series of models with the same parameters as given in Table 2, but varying φ0, and accordingly changed
the reference permeability, background velocity and maximum porosity A/φ0 to retain the same non-dimensional
problem, only modifying the scaling. The results (Figure 3) show that all errors decrease with decreasing porosity.
This is also visible in Figure 1, where the shape of the solitary wave approaches the one of the analytical solution for
small wave amplitudes. The results show no dependence on time step size (Figure 2), and we attribute this to the fact
that the position of the solitary wave – and the numerical solution for each time step – only changes very slowly with
time because we prescribe the negative wave speed at the model boundaries.
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FIGURE 2. Results of temporal (left) and spatial (right) convergence tests, plotted are the errors of
the porosity eφ, compaction pressure ep and phase speed ec relative to the 1-D analytical solution
against model time and resolution, respectively. Grid resolution is chosen as multiples of two of the
coarsest grid with 160 grid cells in vertical direction, corresponding to a cell size of 2.5 m ... 0.3 m
or approximately 1/80...1/640 of the wavelength of the solitary wave. Time step lengths are chosen
according to the CFL condition for the respective phase speed c.

FIGURE 3. Accuracy of the solution in dependence of the solitary wave amplitude resp. background
porosity. Plotted are the shape error of porosity (left), compaction pressure (middle) and the phase
speed error (right) in the final time step compared to the 1-D analytical solution. All model runs
are performed with a grid resolution of 0.625 m and the model end time is inversely proportional
to the wave speed (proportional to the wave amplitude) with a model time of t = 6 · 106 years for
A = 0.01. All errors converge to zero as the porosity approaches zero.

4.2. Magmatic shear bands. It has been suggested and shown both numerically and experimentally that shear bands
are a typical feature emerging when simple shear is applied to a partially molten rock [36, 12]. These shear bands
are predicted to grow fastest under an angle of 45◦ to the orientation of highest shear stress if the rheology of the host
rock is Newtonian and porosity-dependent [34], but to develop at much smaller angles in case of a combination of
porosity-dependent and power-law viscosity [13]. We present shear band models analogous to the setup of [13], using
a power-law relation in the form

(31) η(φ, ε̇) = η0e
α(φ−φ0)ε̇

1−n
n

II
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TABLE 2. Parameters and scaling used for the solitary wave benchmark.

Symbol Expression
ξ 1020 Pa s
η 1020 Pa s
ηf 100 Pa s
ρs0 3000 kg/m3

ρf0 2500 kg/m3

k0 5× 10−9 m2

φ0 1−3 (convergence tests)
2.5−4...2−3 (porosity-dependence)

A 10
δ0 3.41565 m
u0 2.5× 10−13 m/s= 7.8894× 10−6 m/yr
c 1.656774× 10−4 m/yr
CFL 1, 0.5, 0.25, 0.125
nz 160, 320, 640, 1280
resolution 2.5 m, 1.25 m, 0.625 m, 0.3125 m

for both the porosity and strain rate dependence of viscosity with an exponent of α = −27 for the porosity and n = 6
for the strain rate. The permeability is parametrized using the common formulation kφ = k0φ

3. The model geometry
is a 4 mm × 1 mm 2D box periodic in the horizontal direction, starting from a background porosity φ0 = 0.05 with
a white noise perturbation with an amplitude of 0.0005. A constant horizontal velocity us = (±32 m yr−1, 0) in
opposite directions is applied at the top and bottom boundaries, leading to a strain rate of ε̇ = 1.434 s−1, and the
vertical gradients of pressure and porosity are required to be zero at these boundaries. A comprehensive list of model
parameters and the material description can be found in Table 3. During the model evolution, elongated melt bands
develop due to the applied shear; and we measure the angle of these bands after a strain of γ = 1 is reached (Figure
4, top). We apply a Fourier transform to the porosity field of the final time step and analyze the amplitude of the
resulting frequencies in dependence of their angle. Figure 4 (middle left) shows a histogram of these values binned
by band angle. The average angle of the shear bands is then computed by fitting a log-normal to the band angle
distribution. Computations with varying resolutions (Figure 4, middle right) show that the band angle converges to a
value of approximately 17.5◦, being in the range of predictions from experiments and other numerical models, where
15◦ – 25◦ to the plane of shear are reported [13]. A model of magmatic shear bands in three dimensions, but otherwise
identical setup (Figure 4, bottom) reveals that the modeled shear bands are indeed planar features also in 3D. They
still emerge in a certain angle determined by the applied shear, while the white noise – initially randomly distributed
in all three dimensions – only modulates the concentration of porosity in the band along its extension. The model has
a resolution of 8µm, which corresponds to 45 million degrees of freedom, and the full model evolution is shown in
Supplementary Movie S1.

4.3. Compressible convergence. To set up a 2D test for melt transport including compressiblity, we developed a
new benchmark with an analytical solution, choosing the velocity, density and gravity in such a way that the laterally
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FIGURE 4. Band angle of magmatic shear bands after a strain of γ = 1. (top) Porosity field after
the final time step for a model with 512 × 2048 cells. (middle left) Histogram of the band angle
distribution of the model shown at the top after binning in 5-degree intervals. The red line shows
the best fit of a log-normal distribution to the band angle distribution. (middle right) Dominant
band angle (i.e. mode of the log-normal distribution shown on the left) for models with different
resolution, showing convergence to a value of ≈ 17.5◦. (bottom) Shear bands in three dimensions.
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TABLE 3. Parameters and scaling used for the shear bands, plume and global convection model.

Quantity Shear bands model Plume model Global convection model
ξ0 1.41176× 108 Pa s 518 Pa s 1019 Pa s
η0 1.41176× 107 Pa s 519 Pa s 521 Pa s
ηf 100 Pa s 10 Pa s 10 Pa s
ρs0 3000 kg/m3 3400 kg/m3 3400 kg/m3

ρf0 3000 kg/m3 3000 kg/m3 3000 kg/m3

k0 5× 10−9 m2 5−9 m2 10−8 m2

ndis 6 – –
φ0 0.05 0.05 –

(
ξ ∼ eαφ

)
α -27 -10 -10
β – 5 7
αthermal – 3.5× 10−5 1/K 2× 10−5 1/K
Tref – 1600 K 1600 K
kthermal – 4.7 W/(m K) 4.7 W/(m K)
κs – 3.2× 10−12 1/Pa 4.2× 10−12 1/Pa
κf – 3.8462× 10−11 1/Pa 1.25× 10−11 1/Pa
∂κf
∂p – 1.6 0

X extent 0.004 m 600 km 8700 km
Z extent 0.001 m 300 km 2900 km
us (±32m yr−1, 0) – –
γ 1 – –
CFL 1 1 1
nx 128, 256, 512, 1024, 2048 adaptive (128–512) adaptive (64–512)

averaged products ρf,s us as well as ρf,s g are constant, but the divergence of the velocity is not zero:

us(x, z) = (0.1ez,−0.075ez),

ρs(x, z) = 1.2e−z,

ρf (x, z) = e−z,

g(x, z) = (0,−ez),

which also leads to all the terms ∇ρρ being constant. The remaining material parameters are constructed to create a zero
horizontal component of the fluid pressure, a vertical component that depends only on z, and to satisfy our previous
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assumption that ∇ρρ ≈ κρg:

η(x, z) =
1

2
e2x,

ξ(x, z) = e−z +
2

3
e2x + 1,

KD(x, z) =
149

45
+

1

30
ez,

κs =
5

6
,

κf = 1,

Γ =
1

37
ez,

This leads to the following solution for the porosity, fluid pressure, compaction pressure and fluid velocity:

φ(x, z) = 1− 0.3ez,

∇pf = (0,−0.135ez − 1),

pc(x, z) = 0.075ξe−z,

uf (x, z) = (0.1ez,−0.075ez − 2.2
KD

φ
ez).

The results are shown in Figure 5. In the top part, velocity u and porosity φ are converging as expected with order k+1
in the L2 norm, except that we can not explain why u for k = 2 is only converging quadratically (but the correct order
is attained when discretizing with k = 3). The melt velocity is computed as a postprocess from u and the gradient of
the pressure solutions, which explains the almost linear convergence order. This is not a problem in practice, because
the melt velocity is not used in the computation and is only used for visualization. The bottom half of Figure 5 shows
convergence of the three pressures with optimal orders. Altogether, these results demonstrate the functionality and
accuracy of our solver for the fully compressible formulation of two-phase flow.

4.4. Adaptive convergence. To demonstrate the effectiveness of adaptive mesh refinement when applied to problems
of melt migration, we have set up a test case with an incompressible, analytical solution featuring a vein of high
porosity standing out against a low-porosity background (Figure 6), and including a compaction viscosity with a
Gaussian in the middle of the domain. We constructed the boundary conditions, the source term and the gravity in
such a way that the the solution is:

φ = 0.01 + 0.2 exp
(
−20(x+ 2z)2

)
,

ξ = 0.1 + 0.1 exp
(
1− 20(x2 + z2)

)
,

KD = φ,

us = (x, ez − z) ,
ps = 1− z,
pc = −ξ∇ · u = −0.1ez − 0.1ez exp

(
1− 20(x2 + z2)

)
.

A script to generate the constructed material parameters, source terms and boundary conditions can be found in the
supplementary material.

In this example we use a refinement criterion employing a gradient jump estimator based on the porosity and the
compaction pressure. An example mesh can be seen in Figure 7 and the refinement clearly captures the region of
interest for the two fields in the estimator. Note that the refinement does not match the features of the velocity or solid
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lines.



3D COMPRESSIBLE MELT TRANSPORT WITH MESH ADAPTIVITY 17

FIGURE 6. Setup of the convergence test for adaptive mesh refinement. Top row is solid pressure,
compaction pressure, and fluid pressure. Bottom row shows porosity, melt velocity, and solid veloc-
ity. The main feature is a vein of increased porosity standing out against a low-porosity background.

pressure, so we can not expect superior performance compared to global refinement. While it would have been easy
to improve the adaptive convergence by changing the setup to concentrate the features of every variable in the vein,
we think this is a more realistic setup. Even then, the improvements in the error over global refinement are convincing
and highlight how useful adaptive refinement in the setting of melt migration can be, see Figure 8.

In this model global refinement requires two to four times as many degrees of freedom compared to adaptive re-
finement (for quantities like compaction pressure, porosity, and derived quantities like melt velocity). While quantities
like solid velocity see no improvement here, the errors are very small to begin with because the field is relatively
smooth compared to the melt velocity. This is likely also true for most realistic problems. For realistic models we
propose to combine one of these criteria with refinement based on other solution variables or material properties such
as temperature or viscosity.

4.5. Melt transport in a rising mantle plume. When hot buoyant material in form of a mantle plume approaches the
surface, the temperatures inside of the plume exceed the solidus and material starts to melt. We use this example as an
application for our coupled magma/mantle dynamics code. We present two- and three-dimensional plume models, and
employ both the incompressible and compressible formulation of two-phase flow. The model domain is a Cartesian
box, extending from the Earth’s surface to 300 km depth and 600 km horizontally. The initial temperature profile is
adiabatic with a potential temperature of 1600 K, with a cold top thermal boundary layer corresponding to oceanic
lithosphere with an age of 10 million years and a top temperature of 293 K. A spherical perturbation of 250 K with a
diameter of 80 km is added in the center of the bottom boundary of the model to start the plume ascent. Initially, there
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FIGURE 7. Fields like in Figure 6, but showing the mesh refined using an error indicator based on
a combination of porosity and compaction pressure gradient jumps. The algorithm clearly detects
the peak in the compaction pressure and the vein and resolves them using small cells.

is no porosity present in the model. The temperature boundary conditions are prescribed according to the initial values
at top and bottom, and insulating at the sides; the velocity boundary conditions are free slip everywhere except for the
bottom boundary layer, where the hydrostatic pressure is applied, but material is allowed to flow in and out. This leads
to inflow of hot material acting as a plume tail. The rheology is purely Newtonian, but both shear and compaction
viscosity are temperature- and porosity-dependent in the form

η(φ, T ) = η0e
α(φ−φ0)e−β(T−T0)/T0 ,(32)

ξ(φ, T ) = ξ0
φ0

φ
e−β(T−T0)/T0 ,(33)

with exponents of α = −5 and β = 10, which are chosen lower compared to what experiments suggest to limit the
viscosity contrast in the model to approximately 6 orders of magnitude. The melting parametrization [16] is described
in Appendix A. We apply no freezing of melt here, as we are mainly interested in how the volume of generated melt
evolves over time and the related differences between the compressible and incompressible formulation. However,
latent heat of melting is incorporated, with an entropy change of ∆S = −300 J/(kg K) upon melting.

In this setting, the porosity can exceed values of 25–35%, where the host rock ceases to be a connected matrix and
starts to disaggregate into individual blocks and grains. It has been argued [17] that Darcy flow can still be a valid
approximation for this type of flow, in this case describing the settling and interaction of a mush or single grains of
solid in the melt phase. The permeability is then a measure for how much the relative flux of one phase is hindered by
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refinement in the porosity vein, the errors for porosity, compaction pressure, and fluid velocity are
clearly superior, while other errors are comparable to global refinement. Linear, quadratic and
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the other phase. We follow the approach of Keller et al. [17] and use the parametrized permeability law

(34) kφ = k0φ
n(1− φ)m with n = 3 and m = 2.

To test the influence of considering the individual compressibility of solid and fluid on the model evolution, we
performed models with three different formulations of the density parametrization (Figure 9a):

(1) with constant melt and solid densities ρf = 3000 kg/m3 and ρs = 3400 kg/m3, only depending on tempera-
ture,

(2) pressure- and temperature-dependent densities, with the solid density fit to PREM [10] and the melt density
fit to data for komatiite melts [1] using a dependency in the form ρ = ρ0(1 − αthermal(T − Tadi))e

κp, but
incompressible formulation of the mass and momentum conservation equation,

(3) the same densities as in (2), but with the fully compressible system of equations.

A comprehensive list of model parameters can be found in Table 3, and except for the properties mentioned above the
material model is the same as described in Section 4.2.
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FIGURE 9. Buoyancy and melt volume in a rising mantle plume. (left) Density profiles used for the
different plume models: Solid lines denote solid density, dashed lines denote melt density. Colors
illustrate the density formulation: Blue lines mark a density that only depends on temperature, but
not on pressure, red lines mark both temperature- and pressure-dependent densities. (right) Devel-
opment of melt volume over time in dependence of the employed density formulation. Blue lines
mark a model where both solid and melt phase are individually incompressible, and the density does
not depend on pressure (blue density profiles on the left, purely incompressible formulation); dark
red lines mark a model where both solid and melt phase are individually incompressible, but the
density depends on pressure (red density profiles on the left, this is analogue to the extended Boussi-
nesq approximation for Stokes flow); and light red lines mark a model where both solid and melt
phase are individually compressible and the density depends on pressure (red density profiles on the
left, full compressible formulation). The two sets of lines mark different melting parameterizations,
leading to melt production in different depth regions of the mantle.

During the model evolution, the plume ascends from the bottom of the model due to its high buoyancy. At a
pressure of approximately 5 GPa material starts to melt, lowering the viscosities and further reducing the density.
While the plume rises, the melt first accumulates at its top until it reaches a depth of 50 km, where the melt starts to
separate from the plume head, moving further up and spreading laterally at the base of the lithosphere (Figure 10). In
agreement with previous studies of melt migration in mantle plumes with lower melt fractions [27], melt segregation
velocities point almost vertically upwards, and within the plume head magnitudes of melt and solid velocities are
comparable. Horizontal movement occurs when melt is advected with the solid plume material (for low melt fractions)
and as it stagnates below the impermeable lithosphere in a melt-rich layer. The generated shear initiates small-scale
downwellings of cold and dense lithosphere above into the low-viscosity plume material, leading to mixing in the
plume head and thinning of the lithosphere. The full model evolution is shown in Supplementary Movie S2. We
evaluate the volume of generated melt over the model evolution time and compare this quantity between the different
setups (Figure 9b).
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In the purely incompressible model, the density of the melt is very low, leading to a fast plume ascent and earlier
melting and upwards migration of melt. In the models with pressure-dependent density, the buoyancy of the plume is
smaller, and the plume rises more slowly. This explains the faster growth of melt volume for the purely incompressible
model. However, there is also a volume difference between the compressible case and the incompressible, but pressure-
dependent density case. As there is no difference in density parameterizations between these models, the plume
buoyancy, melt generation rate and ascent velocity is identical. But as the compressible formulation considers the
extension of the melt phase when it reaches lower pressures, a higher overall melt volume is reached in this model.
The difference in melt volume between these two cases depends on the melt compressibility, but it is also influenced
by where and how much melt is generated, i.e. the melting parametrization. For melt generated at greater pressures,
the change in density and thus the volume change is higher. For the example cases shown here it amounts to 5% in the
case with shallow melting and 11.4% in the case with deep melting. As the models are only two-dimensional, these
values technically represent melt areas, and not melt volumes, so that for a three-dimensional model an even stronger
effect of compressibility (of ∆V ≈ ∆A3/2) is expected, leading to differences of up to 18%.

Figure 11 shows a model with identical setup as in the incompressible case, but in three dimensions, and illustrates
how melt accumulates at the top of the rising plume head. It also demonstrates how a combination of static and
adaptive mesh refinement can be used to resolve features of interest while saving computational resources: the mesh
is refined statically in a cylinder around the plume and in the lithosphere, and in addition to that is refined adaptively
where melt is present.

4.6. Influence of melt migration on a global convection model. After showcasing our implementation on a realistic
example of melt migration in a rising mantle plume, we will demonstrate that with the aid of adaptive mesh refinement
our software also allows it to combine models of global mantle convection and melt migration. We study how melt
generation and segregation impact the dynamics of such a model by comparing a classic mantle convection model –
where only the equilibrium melt fraction in dependence of temperature and pressure is computed – and a model with
coupled magma/mantle dynamics, where melt is allowed to migrate. More precisely, we consider the distribution of
melt, the flow field, and average velocities and temperatures.

As our focus is on the qualitative influence of melt migration on the model dynamics, we simplify the model setup
to only include basic features important to study this dependence. We choose a Cartesian geometry with an aspect
ratio of three and dimensions of 2900 × 8700 km. The model is heated from the bottom and cooled from the top, with
no additional heat sources in the form of internal heating, latent heat or shear heating. We employ a simplified melting
parametrization with a linear dependence of the solidus temperature on pressure p and depletion C, and assume that
the generated melt is proportional to the temperature in excess of the solidus:

φequilibrium =
T − Tsol

Tliq − Tsol
with Tsol = Tsol,0 + ∆Tp p+ ∆Tc C(35)

Tliq = Tsol + 500 K(36)
Tsol,0 = 1300 K(37)

∆Tp = 6× 10−8 K/Pa(38)
∆Tc = 200 K(39)

The melting rate is computed as the difference between the equilibrium melt fraction and the melt present in the model.
While these melting relations are strongly simplified, they capture the qualitative influence of temperature, pressure
and depletion/enrichment on the melting rate and are an appropriate approximation for studying the general model
behavior with the present melt fractions of up to 20% and the dependence of melt generation and migration on the
model dynamics. Whenever melt is generated in the model and migrates upwards, it leaves behind depleted material,
and when the porosity present in the model exceeds the computed equilibrium melt fraction, melt freezes, creating
enriched material. This change in material composition is modeled by a density change of the material proportional to
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FIGURE 10. Dynamics of melt migration in a rising mantle plume. Snapshots of melt fraction
(also showing the finite element mesh), depletion, temperature, compaction pressure, segregation
velocity (difference between melt and solid velocity) and viscosity in the plume after a model time
of t = 142000 years as it spreads below the lithosphere (incompressible model). During the plume
ascent, melt accumulates at the top of the plume head and starts to separate from the melting region
when the plume approaches the base of the lithosphere and spreads laterally. Interaction with the
cold lithosphere leads to small-scale convection and mixing inside of this lens of molten material.
An animation of the plume ascent is provided in Supplementary Movie S2.
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FIGURE 11. Temperature, porosity and mesh in a three-dimensional model of melt migration in a
rising mantle plume. Background colors represent temperature, contours show porosity. The mesh
is refined towards the center of the plume, in the top boundary layer and adaptively in regions where
melt is present.

enrichment/depletion, with depleted material being less dense and enriched material being denser than the surrounding
mantle. In addition, porosity weakens the material as described in Section 4.5, except for the compaction viscosity,
which follows an exponential dependence equivalent to the one for the shear viscosity. All model parameters can be
found in Table 3.

In the classic mantle convection model (Figure 12, top), melt is generated by decompression melting where hot
material reaches a shallow depth and partially molten areas remain relatively stationary as long as the general pattern
of the flow field does not change. In the model with melt migration (Figure 12, bottom), the same mechanism of melt
generation is active, initially leading to melting in the same regions where hot material is upwelling and approaching
the surface. However, as the melt migrates upwards, it reaches regions with lower ambient mantle temperatures and
starts to freeze, leaving behind depleted material that is not fertile enough to generate new melt. This means that the
overall melt volume is much smaller (Figure 13, bottom left), as is expected for fractional melting in comparison to
batch melting. Moreover, patches of enriched material created by freezing of melt influence the model dynamics: as
it has a higher density than the surrounding mantle, cold and enriched material sinks down, initiating several small
downwellings that do not occur in the model without melt migration. Figure 13 (top) illustrates the evolution of
enrichment and depletion over time: As soon as melt is generated in the model, it migrates upwards from its source,
where it freezes again, creating a layer of enriched material close to the top of the model, and leaving behind a layer
of depleted material below, in 200 – 400 km depth. In principle, even though the model is extremely simplified, these
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FIGURE 12. Time snapshots of temperature and melt fraction in global models with melt migration.
The upper row shows a model without melt migration, where the melt fraction is calculated as
postprocessor for the present temperature and pressure conditions (i.e. batch melting), the lower
row shows a model with melt migration (and fractional melting). Columns are different points in
time. The model without melt migration features broad patches of melt, generated in regions of
upwelling in the model. In contrast, the model with melt migration shows several smaller patches
of melt with downwellings in between, where the lithosphere is eroded due to the destabilizing effect
of the high-density, crystallized material. Different average temperatures are due to the fact that
the model initial conditions are not the steady state values, but due to the model geometry (i.e. box
domain and 2D) the equilibrium conditions would not reflect realistic temperatures for the Earth.

layers correspond to the Earth’s crust (or at least the part of the crust generated by plumes, as there are no divergent
plate boundaries in the model where oceanic crust and lithosphere would be generated) and the asthenosphere. Of
course, the melt does not migrate through the previously existing cold top layer in our models and hence can not reach
the surface. However, the small-scale convection initiated by the downwellings of dense enriched, crystallized material
allows for new, hot material to flow upwards, and melt intruding further upwards into the lithosphere. This is already
a similar process as what is described by Sobolev et al. [32] as thermo-magmatic erosion of the lithosphere by mantle
plumes. The downwelling enriched material is subsequently distributed over the whole model domain (blue streaks
towards the end of the time evolution in 13, top).The full model evolution is presented in Supplementary Movie S3.

This diverging model dynamics is also visible in the root mean square velocities (Figure 13, bottom right): During
the first 250 million years both models behave almost identically, but afterwards different peaks develop in the two
models. However, as the root mean square velocity is mainly influenced by upwellings instead of downwellings (due
to the lower viscosities) both the average value and the frequency of peaks remain similar.

It is very likely that the model behavior will change if a more complex melting and material behavior is incorporated,
but our model shows that already this very simple approximation of melting, together with melt migration, has a
strong influence on the model dynamics, including average model velocities, predicted melt volumes and number and
frequency of downwellings.
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FIGURE 13. Time evolution of global models with melt migration. (top) Depletion field, depth-
averaged in 12 slices. Once melt starts to be generated, enriched material accumulates in the top
layer, and depleted material in a layer below in 200 – 400 km depth. Part of the enriched material
also flows downwards and is distributed over the whole model domain. (bottom left) Development
of the melt volume for models with (red lines) and without (blue line) melt migration, and varying
density contrasts between “enriched” and “depleted” material. For the model without melt migra-
tion, melt volume is calculated as equilibrium melt fraction for the present temperature and pressure
conditions (i.e. batch melting). (bottom right) Development of the root mean square velocity for
models with (red line) and without (blue line) melt migration. While the model evolution is similar
in the beginning, it diverges once a significant amount of melt is generated (compare left side), and
the model with melt migrations shows higher velocity peaks.

5. CONCLUSIONS AND OUTLOOK

In this study, we described how to implement two-phase flow in two and three dimensions in a finite element
code with adaptive mesh refinement. The proposed formulation, which includes the compressibility of the individual
solid and melt phase in addition to compaction, allows models to be extended consistently to greater depth in the
Earth’s mantle. The presented applications demonstrate the accuracy and efficiency of our software and its ability
to capture the behavior of melt in relevant application cases of magma/mantle dynamics on different scales, ranging
from millimeters to thousands of kilometers. Simulations of mantle plumes and global convection show that including
melt migration in a model significantly changes the convection pattern, and for deep melts the compressibility can
have an effect of an order of 20% on the computed melt volume. The main advantages of the presented method
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are (1) the effectiveness of adaptive mesh refinement, allowing for higher resolution or larger model domains with
the same computational resources, (2) the potential to study applications with three-dimensional geometries and (3)
the capability to couple melt migration to processes deeper in the Earth’s mantle and global mantle convection in a
consistent formulation considering the compressibilities of solid and melt phase.

Despite all this, the methods described here are not sufficient to solve all conceivable models related to melt migra-
tion realistically: The focus of this study is on the coupling of magma dynamics to mantle dynamics on larger scales,
and our current approach does not consider elastic and plastic deformation of the material. Hence, it does not allow for
modeling of melt transport through fractures or dikes, one of the main modes of melt extraction on smaller scales such
as in the lithosphere and crust [17]. These deformation mechanisms introduce additional non-linearities and make the
problem numerically challenging, demanding the use of more efficient non-linear solvers, ideally employing Newton’s
method, to be viable in three dimensions.

In addition, we here concentrate on the mechanical evolution of the two-phase system, simplifying its thermal and
chemical evolution and using parameterizations for calculating melting and freezing rate and the influence of melt
on material properties. This approximation considers the qualitative influence of compositional changes on solidus,
liquidus, density, viscosity and other material properties. However, it does not allow an accurate computation of the
melt and residuum composition in a multicomponent system or the associated chemical heterogeneities generated by
the melting process – which would be required for a more realistic description of the rheology of partially molten
regions and a more sophisticated comparison of the model to geochemical data. Employing thermodynamic data to
calculate melting rates self-consistently and keeping track of the evolution of solid and melt composition should be a
goal for future modeling studies.

Finally, we assume that melt and solid are always in thermodynamic equilibrium. However, this might not be a
valid approximation for all applications of porous flow in the Earth’s mantle and excludes modeling disequilibrium
melting such as described in Rudge et al. [24]. Geochemical evidence suggests that the melts that formed mid-ocean
ridge basalts were not in chemical equilibrium with the matrix they were migrating through; and modeling has shown
that disequilibrium is important for the formation of reactive instabilities, leading to melt focusing and channelized
flow below mid-ocean ridges [35].

Nevertheless, we have shown that ASPECT can be applied to a number of relevant model setups for coupled
magma/mantle dynamics and that it has the potential to become a versatile and useful tool for the magma migration
community.

5.1. Acknowledgments. Both authors were partially supported by the Computational Infrastructure for Geodynam-
ics initiative (CIG), through the National Science Foundation under Award No. EAR-0949446 and The University
of California – Davis. T. Heister was partially supported by National Science Foundation grant DMS1522191. J.
Dannberg acknowledges the support of the Helmholtz graduate research school GeoSim.

Most of the computational resources were provided by the North-German Supercomputing Alliance (HLRN) as
part of the project ”Plume-Plate interaction in 3D mantle flow – Revealing the role of internal plume dynamics on
global hot spot volcanism”. Clemson University is acknowledged for generous allotment of compute time on Palmetto
cluster.

REFERENCES

[1] Agee, C. B. & Walker, D., 1993. Olivine flotation in mantle melt, Earth and Planetary Science Letters, 114(23),
315 – 324.

[2] Ballmer, M. D., Ito, G., Wolfe, C. J., & Solomon, S. C., 2013. Double layering of a thermochemical plume in
the upper mantle beneath hawaii, Earth and Planetary Science Letters, 376, 155 – 164.

[3] Bangerth, W., Burstedde, C., Heister, T., & Kronbichler, M., 2011. Algorithms and data structures for massively
parallel generic adaptive finite element codes, ACM Trans. Math. Softw., 38(2).



3D COMPRESSIBLE MELT TRANSPORT WITH MESH ADAPTIVITY 27

[4] Bangerth, W., Heister, T., et al., 2015. ASPECT: Advanced Solver for Problems in Earth’s ConvecTion,
https://aspect.dealii.org/.

[5] Bangerth, W., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., & Young, T., 2015.
The dealii library, version 8.2, Archive of Numerical Software, 3(1).

[6] Barcilon, V. & Lovera, O. M., 1989. Solitary waves in magma dynamics, Journal of Fluid mechanics, 204,
121–133.

[7] Barcilon, V. & Richter, F. M., 1986. Nonlinear waves in compacting media, Journal of Fluid mechanics, 164,
429–448.

[8] Cagnioncle, A.-M., Parmentier, E. M., & Elkins-Tanton, L. T., 2007. Effect of solid flow above a subducting slab
on water distribution and melting at convergent plate boundaries, Journal of Geophysical Research: Solid Earth,
112(B9), B09402.

[9] Dannberg, J. & Heister, T., 2015. Supporting computer code, https://github.com/jdannberg/aspect/tree/melt
reorder fields.

[10] Dziewonski, A. M. & Anderson, D. L., 1981. Preliminary reference earth model, Physics of the Earth and
Planetary Interiors, 25(4), 297 – 356.

[11] Gerya, T., 2011. Future directions in subduction modeling, Journal of Geodynamics, 52(5), 344 – 378.
[12] Holtzman, B. K. & Kohlstedt, D. L., 2007. Stress-driven melt segregation and strain partitioning in partially

molten rocks: Effects of stress and strain, Journal of Petrology, 48(12), 2379–2406.
[13] Katz, R. F., 2006. The dynamics of melt and shear localization in partially molten aggregates, Nature, 442,

676–679.
[14] Katz, R. F., 2008. Magma dynamics with the enthalpy method: Benchmark solutions and magmatic focusing at

mid-ocean ridges, Journal of Petrology, 49(12), 2099–2121.
[15] Katz, R. F., 2010. Porosity-driven convection and asymmetry beneath mid-ocean ridges, Geochemistry, Geo-

physics, Geosystems, 11(11), Q0AC07.
[16] Katz, R. F., Spiegelman, M., & Langmuir, C. H., 2003. A new parameterization of hydrous mantle melting,

Geochemistry, Geophysics, Geosystems, 4(9), 1073.
[17] Keller, T., May, D. A., & Kaus, B. J. P., 2013. Numerical modelling of magma dynamics coupled to tectonic

deformation of lithosphere and crust, Geophysical Journal International, 195(3), 1406–1442.
[18] Kronbichler, M., Heister, T., & Bangerth, W., 2012. High accuracy mantle convection simulation through modern

numerical methods, Geophysical Journal International, 191(1), 12–29.
[19] McKenzie, D., 1984. The generation and compaction of partially molten rock, Journal of Petrology, 25(3),

713–765.
[20] Mittelstaedt, E., Ito, G., & van Hunen, J., 2011. Repeat ridge jumps associated with plume-ridge interaction,

melt transport, and ridge migration, Journal of Geophysical Research: Solid Earth (1978–2012), 116(B1).
[21] Ohtani, E. & Maeda, M., 2001. Density of basaltic melt at high pressure and stability of the melt at the base of

the lower mantle, Earth and Planetary Science Letters, 193(12), 69 – 75.
[22] Rhebergen, S., Wells, G. N., Katz, R. F., & Wathen, A. J., 2014. Analysis of block preconditioners for models of

coupled magma/mantle dynamics, SIAM Journal on Scientific Computing, 36(4), A1960–A1977.
[23] Rhebergen, S., Wells, G. N., Wathen, A. J., & Katz, R. F., 2015. Three-field block preconditioners for models of

coupled magma/mantle dynamics, SIAM Journal on Scientific Computing, 37(5), A2270–A2294.
[24] Rudge, J. F., Bercovici, D., & Spiegelman, M., 2011. Disequilibrium melting of a two phase multicomponent

mantle, Geophysical Journal International, 184(2), 699–718.
[25] Ruedas, T., Schmeling, H., Marquart, G., Kreutzmann, A., & Junge, A., 2004. Temperature and melting of a

ridge-centred plume with application to iceland. part i: Dynamics and crust production, Geophysical Journal
International, 158(2), 729–743.

[26] Sanloup, C., Drewitt, J. W. E., Konopkova, Z., Dalladay-Simpson, P., Morton, D. M., Rai, N., van Westrenen, W.,
& Morgenroth, W., 2013. Structural change in molten basalt at deep mantle conditions, Nature, 503, 104–107.

https://github.com/jdannberg/aspect/tree/melt_reorder_fields
https://github.com/jdannberg/aspect/tree/melt_reorder_fields


28 J. DANNBERG, T. HEISTER

[27] Schmeling, H., 2000. Partial melting and melt segregation in a convecting mantle, in Physics and Chemistry of
Partially Molten Rocks, pp. 141–178, Springer.

[28] Schmeling, H., 2010. Dynamic models of continental rifting with melt generation, Tectonophysics, 480(14), 33
– 47.

[29] Schmeling, H. & Marquart, G., 2008. Crustal accretion and dynamic feedback on mantle melting of a ridge
centred plume: The iceland case, Tectonophysics, 447(14), 31 – 52, Plate movement and crustal processes in and
around Iceland.

[30] Scott, D. R. & Stevenson, D. J., 1986. Magma ascent by porous flow, Journal of Geophysical Research B,
91(B9), 9283–9296.

[31] Simpson, G. & Spiegelman, M., 2011. Solitary wave benchmarks in magma dynamics, Journal of Scientific
Computing, 49(3), 268–290.

[32] Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., Krivolutskaya, N. A., Petrunin, A. G., Arndt, N. T., Radko, V. A.,
& Vasiliev, Y. R., 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes, Nature,
477(7364), 312–316.

[33] Spiegelman, M., 1996. Geochemical consequences of melt transport in 2-d: The sensitivity of trace elements to
mantle dynamics, Earth and Planetary Science Letters, 139(1), 115–132.

[34] Spiegelman, M., 2003. Linear analysis of melt band formation by simple shear, Geochemistry, Geophysics,
Geosystems, 4(9), 8615.

[35] Spiegelman, M., Kelemen, P. B., & Aharonov, E., 2001. Causes and consequences of flow organization during
melt transport: The reaction infiltration instability in compactible media, J. geophys. Res, 106(B2), 2061–2077.

[36] Stevenson, D. J., 1989. Spontaneous small-scale melt segregation in partial melts undergoing deformation,
Geophysical Research Letters, 16(9), 1067–1070.

[37] Suzuki, A. & Ohtani, E., 2003. Density of peridotite melts at high pressure, Physics and Chemistry of Minerals,
30(8), 449–456.

[38] Weatherley, S. M. & Katz, R. F., 2012. Melting and channelized magmatic flow in chemically heterogeneous,
upwelling mantle, Geochemistry, Geophysics, Geosystems, 13(5), Q0AC18.

[39] Wiggins, C. & Spiegelman, M., 1995. Magma migration and magmatic solitary waves in 3-d, Geophysical
Research Letters, 22(10), 1289–1292.

APPENDIX A. PARAMETRISATION OF THE MELTING MODEL

Modeling of melt generation requires a parametrization for the melting rate in dependence of temperature, pressure
and composition. We use the parametrization from Katz et al. [16] for melting of dry peridotite (Figure 14).

In addition, when material undergoes the phase transition from solid to fluid (or the other way round), latent heat
is consumed (or released). The effects of latent heat are included in the energy conservation equation in form of the
term ρsT∆S

(
∂F
∂t + us · ∇F

)
. Here, ∆S is the change of entropy (positive for exothermic phase transitions) and F

is the degree of depletion (the fraction of the source rock that has already been molten; without melt extraction from
the source this is equal to the melt fraction). As the phase of the material, for a given composition, depends on the
temperature and pressure, the latent heat term can be reformulated:

∂F

∂t
+ us · ∇F =

DF

Dt

=
∂F

∂T

DT

Dt
+
∂F

∂ps

Dps
Dt

=
∂F

∂T

(
∂T

∂t
+ us · ∇T

)
+
∂F

∂ps
us · ∇ps.
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FIGURE 14. Melt fraction in dependence of temperature and pressure after Katz et al. [16, left]
and modified for deep melting (middle), and temperature profile of adiabatically upwelling mate-
rial when latent heat of melting is taken into account for batch melting of anhydrous peridotite.
Parameterizations after Katz et al. [16].

The last transformation results from the assumption that the flow field is always in equilibrium and consequently
∂p/∂t = 0. This means, we have to calculate the partial derivatives of our melt fraction parametrization with respect
to temperature and pressure.

A.1. Melting of peridotite prior to the exhaustion of clinopyroxene. For peridotite, there are two different func-
tions prior to and after the exhaustion of clinopyroxene. Prior to the exhaustion of clinopyroxene

F (p, T ) =

(
T − Tsol(p)

T lh
liq(p)− Tsol(p)

)β
∂F (p, T )

∂T
= β

(
T − Tsol(p)

T lh
liq(p)− Tsol(p)

)β−1
1

T lh
liq(p)− Tsol(p)

∂F (p, T )

∂p
= β

(
T − Tsol(p)

T lh
liq(p)− Tsol(p)

)β−1

(
∂T lh

liq(p)

∂p
(Tsol(p)− T ) +

∂Tsol(p)

∂p
(T − T lh

liq(p))

)
1

(T lh
liq(p)− Tsol(p))2

with the solidus Tsol(p) = A1 +A2p+A3p
2,

the lherzolite liquidus T lh
liq(p) = B1 +B2p+B3p

2

and the true liquidus Tliq(p) = C1 + C2p+ C3p
2.

A.2. Melting of peridotite after the exhaustion of clinopyroxene. The exhaustion of clinopyroxene happens at the
melt fraction

Fcpx-out =
Mcpx

Rcpx(p)
with Rcpx(p) = r0 + r1p
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TABLE 4. Parameters used for melting of anhydrous peridotite. Modified from Katz et al. [16].

Parameter Used for Value Value for deep melting Unit
A1 Tsol 1085.7 1120.7 K
A2 1.329 · 10−7 1.1 · 10−7 K Pa-1

A3 −5.1 · 10−18 −5 · 10−18 K Pa-2

B1 T lh
liq 1475.0 K

B2 8.0 · 10−8 K Pa-1

B3 −3.2 · 10−18 K Pa-2

C1 Tliq 1780.0 K
C2 4.5 · 10−8 K Pa-1

C3 −2.0 · 10−18 K Pa-2

β F 1.5
Mcpx 0.15 mass fraction
r0 0.5 mass fraction
r1 8 · 10−11 mass fraction Pa-1

∆S latent heat −300 J kg-1 K-1

and marks a change in the productivity of the system. Mcpx is the mass fraction of clinopyroxene in the peridotitic
host rock and Rcpx is the reaction coefficient for cpx in the melting reaction. For F > Fcpx-out

F (p, T ) = Fcpx-out + (1− Fcpx-out)

(
T − Tcpx-out(p)

Tliq(p)− Tcpx-out(p)

)β
∂F (p, T )

∂T
= β(1− Fcpx-out)

(
T − Tcpx-out(p)

Tliq(p)− Tcpx-out(p)

)β−1
1

Tliq(p)− Tcpx-out(p)

∂F (p, T )

∂p
=
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∂p

[
1−

(
T − Tcpx-out(p)

Tliq(p)− Tcpx-out(p)

)β]

+ β(1− Fcpx-out)

(
T − Tcpx-out(p)

Tliq(p)− Tcpx-out(p)

)β−1

∂Fcpx-out

∂p (Tcpx-out(p)− Tliq(p)) +
(
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)
(Tcpx-out(p)− T )

(Tliq(p)− Tcpx-out(p))2

with Tcpx-out = Fcpx-out
1
β

[
T lh

liq(p)− Tsol(p)
]

+ Tsol(p).

A.3. Parameters. The parameters used for the solidus and liquidus temperatures and the melt fraction are taken
from Katz et al. [16] for the case of anhydrous melting and are given in Table 4. For modeling melting under higher
pressures, such as shown in Section 4.5 (deep melting), we modified the solidus temperature (reflecting a compositional
change or change in volatile fraction), resulting in the deepest melts in the plume being generated in approximately
230 km depth.

A.4. Validation. We test our melting model by computing the numerical solution for the temperature profile of adi-
abatically upwelling material that undergoes melting and the associated latent heat effects. Figure 14 (right) shows
these results, which can be compared to equivalent data for anhydrous melting in Katz et al. [16, figure 11b], who
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calculate a simplified version of the productivity function

dF

dP

∣∣∣∣
S

=
− cpT

∂T
∂P

∣∣
F

+ F
αf
ρf

+ (1− F )αsρs

∆S +
cp
T
∂T
∂F

∣∣
P

(40)

and then numerically integrate

dT

dP
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S

=
T

cp

(
F
αf
ρf

+ (1− F )
αs
ρs

+ ∆S
dF

dP
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S

)
(41)

to receive the P-T path of the adiabat.

APPENDIX B. SUPPLEMENTARY MOVIES

The provided animations show the development of several of the presented models:
Movie S1. Animation of the development of magmatic shear bands in three dimensions in a partially molten host

rock that is exposed to shearing. Setup, colors and scaling are the same as in Figure 4 (bottom). The animation can
also be found at https://www.youtube.com/watch?v=zOEqhaiBswU.

Movie S2. Animation of the evolution of a rising mantle plume that undergoes melting. Setup, colors and scaling
are the same as in Figure 10. The animation can also be found at https://youtu.be/aWndYbMIjVQ.

Movie S3. Animation of the evolution of a global mantle convection model that incorporates melting, illustrating
the difference between only computing melt fractions (top) and allowing melt to migrate and influence the model
behavior (bottom). Setup, colors and scaling are the same as in Figure 13. The animation can also be found at
https://youtu.be/Kwyp4Jvx6MU.

https://www.youtube.com/watch?v=zOEqhaiBswU
https://youtu.be/aWndYbMIjVQ
https://youtu.be/Kwyp4Jvx6MU
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