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Abstract. Software is the backbone of scientific computing. Yet, while we regularly

publish detailed accounts about the results of scientific software, and while there is a

general sense of which numerical methods work well, our community is largely unaware

of best practices in writing the large-scale, open source scientific software upon which

our discipline rests. This is particularly apparent in the commonly held view that

writing successful software packages is largely the result of simply “being a good

programmer” when in fact there are many other factors involved, for example the

social skill of community building.

In this article, we consider what we have found to be the necessary ingredients

for successful scientific software projects and, in particular, for software libraries upon

which the vast majority of scientific codes are built today. In particular, we discuss the

roles of code, documentation, communities, project management, and licenses. We also

briefly comment on the impact on academic careers of engaging in software projects.
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1. Introduction

Today, computational science is the third leg upon which scientific discovery as well as

engineering progress rests, often considered on equal footing to theory and experimental

investigation. The primary tool of computational science is software. Yet, current

curricula give surprisingly little attention to teaching the software that is available

and, in particular, to the process of arriving at high quality software. Likewise,

discovering and documenting best practices are not often considered in our community.

In this paper, we intend to discuss what we consider the primary factors determining

whether open source computational software libraries – the main foundation upon

which academic and also a significant part of industrial computational research rests

– is successful. Examples of the kind of libraries we have in mind are PETSc [4, 5],

Trilinos [30, 31], the various openly available finite element libraries such as the

deal.II project we are both associated with [7], or on a more foundational level libraries

such as BLAS/LAPACK and open source MPI implementations. Because our focus

is on open source software libraries supporting computational science, we will define

a successful library as one that attracts a significant user and developer community

outside the immediate institution at which it is developed; it will also be long-lived, i.e.,

exceed the 3–5 years lifetime of a typical research project for which it may have initially

been built.

Our focus here is not on the reasons for developing and releasing software as open

source, nor will we discuss how to write the code that goes into such libraries.‡ Instead,

we intend to shed light on the ecosystem that surrounds the actual code as experience

has shown that it is not only the actual code that determines whether any given project

is successful, but also to a large degree the community that surrounds a project, its

documentation, willingness to answer questions, etc. In other words, the success of an

open source project requires substantial effort and skill outside of programming. Our

goal is to document some of the factors we perceive as important in evaluating whether

a project will be successful, as well as what project creators should keep in mind in their

development planning.

Many of the points we will make here have previously been made – and have

been made more eloquently –, albeit often in different contexts and with different

intentions. For example, many of the observations below about how and why open source

communities work mirror those made in Eric Raymond’s seminal essay The Cathedral

and the Bazaar first published in 1997.§ However, Raymond’s essay is essentially

descriptive and analytical, not prescriptive as this paper intends to be. On the other

hand, it has an excellent analysis of the social environment of open source software

‡ For this, refer to the book by Oliveira and Stewart [41] and the recent preprint [49], for example.

Most modern books on numerical methods have chapters on writing the actual code for the methods

they discuss. It is curious to note that neither [41] nor books on numerical methods pay much attention

to anything that goes beyond just writing and debugging the actual code.
§ Available as a postscript file from Raymond’s web page. An amended version of the essay was later

re-printed together with others in [43].
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that encompasses that given in Section 2.3. A later description of open source software

projects is provided in the extensive book by Fogel in [23]. While it contains a great deal

of very practical advice on running open source projects and is a worthy resource to any

open source manager, it is rather abstract in the projects it talks about. In particular,

it does not address at all the specifics of computational software. It is also geared at

projects that are typically much larger than what we encounter in our community.

The most important difference between these sources and the current article is

that here, our focus is on computational software since there are important distinctions

between computational software and other classes of software.‖ For one, the target

audience of computational software packages is vastly smaller than for many other

projects: while projects like Firefox or Eclipse may have millions of downloads per

year, successful computational projects will have a few thousands.¶ There are a few

exceptions, like the very popular NumPy project [40], but this can be attributed to

their wide applicability in any scientific project. Furthermore, the potential number of

developers of computational software packages is also much smaller because they require

a more advanced and specialized skillset on top of an interest in software development:

the majority of contributors to computational science projects are graduate students or

beyond, with deep knowledge in the mathematical methods employed.

However the biggest difference is in the kind of software we will focus on and the

technical consequences this has. Software can roughly be categorized into the following

classes: software libraries; applications driven by input files, defined communication

protocols, or similar fixed format data; and interactive applications with some kind of

(graphical) user interface. Within the computational sciences, examples of the first kind

would be MPI [24], BLAS, LAPACK or PETSc [4, 5], i.e., foundational libraries that

provide building blocks from which users create applications. The second category is

represented by many of the codes used in the applied sciences such as in computational

chemistry or the computational earth sciences. The final group is exemplified by large

visualization packages such as VisIt [19] or ParaView [29]. This distinction between

classes of software is important because it affects how users actually interact with

software.

In this paper, we will primarily focus on open source projects in the first

group, software libraries, since they form the basis of much of computational sciences

method development in areas where algorithms are still invented, implemented and

tested – i.e., in academic research. Because users (as well as other developers or

commercial companies interested in using them) interact in fundamentally different

ways with software libraries than with applications that are driven through graphical

‖ For a similar conclusion that scientific software is different from other software projects, see also [32].

This paper, a case study of how scientific software is typically written, also gives a good overview

of the informal nature in which software has traditionally been treated in the sciences. A concrete

description of two computational astrophysics projects and how they work is also given by Turk [45].

The conclusions of this latter paper very much align with our own observations.
¶ A guide to the size of the computational sciences community is to keep in mind that even the most

widely circulated mathematical journals have less than 1,000 institutional subscribers worldwide.
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user interfaces, it is clear that the projects behind such software need to take these

differences into account to succeed. It is this particular angle by which this article

differs from the entire existing literature on open source projects.

The article owes many of its insights to the many conversations we had with leaders

of open source projects and their experience. However, there is no denying the fact that

it is also influenced by the experience we have had with the deal.II project, a large

and successful open source library that supports all aspects of solving partial differential

equations via the finite element method (see, for example, [6,7,9,10]) and more recently

the Aspect code to simulate convection in the Earth mantle [8, 34]. In the case of

deal.II, one of us has been a project maintainer with the project since its inception

15 years ago whereas the other has graduated from being a user to one of the three

current project maintainers. We are also the two principal authors of Aspect. Given

this background, some of our examples will use the language of finite element methods;

however, this is not intended to limit the scope of the software we want to cover here.

Like most open source projects, computational science software often starts out as

unfunded projects that satisfy someone’s or some research group’s need. Some projects

may, at a much later stage, acquire external funding or institutional backing but these

are typically the ones that have already proven to be successful (this is also the story of

deal.II). In other words, what we describe in this article as important points and best

practices for open source software is most relevant to those projects that may not yet

be externally funded but hope to get on a course where they may receive such funding.

Of course, the points we make apply equally well to projects that are already externally

supported.

In the remainder of this paper, we will first discuss what we consider to be the three

primary factors for success (Section 2), followed by other reasons (Section 3). These

sections will show that a lot more than just writing code is required to make a project

successful. In Section 4 we will therefore comment on the question what this means for

individual researchers considering a career based on scientific software. We conclude in

Section 5.

2. The top three reasons for success

There are, no doubt, many reasons that determine whether a particular project is

successful. Maybe the single most important one is whether a project is conceived

of at the right time – but since this is something that an author can not immediately

affect, we will only come back to this in Section 3.1. Among the factors that a project

can affect, the following three stand out: utility and quality, documentation, and the

community that supports a project. We will discuss these in turn and come back to

other determining factors in Section 3.
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2.1. Utility and quality

For a project to be used it needs to provide a certain amount of utility. Projects that

do not provide the functionality they promise frustrate users and will, sooner or later,

be replaced by better software. Utility is a subjective term as it is relative to a user’s

needs. However, it also has objective components. For example, PETSc is a useful

library to many people due to its broadly applicable object model as well as its many

independent components that can be combined in myriad ways and that can interact

with user written components.

Another metric that determines utility is quality, and we will focus on this aspect

in the following. Among the many definitions of “quality”, let us for simplicity just

discuss “it works” – i.e., it can be installed and does what it is intended to do – and

ignore criteria like performance, scalability, etc. A project that does not “work” for a

user does not provide any utility and it is this particular (negative) point of view that

will guide the following discussion.

The first contact a potential new user has with a software is trying to install it

after download. Given that most computational software does not have precompiled

packages for major operating systems,+ installing oftentimes happens through the

common ./configure ; make ; make install sequence of commands in the Linux

world. Sometimes, to get through this step, a host of other (optional) libraries may

need to be configured, installed, and supplied in the configure stage. Packages that turn

out to be difficult to install already lose a large fraction of their potential user base: if

a package doesn’t readily install on my machine, there is oftentimes a similar package

from a separate project that one can download. Most of us do this all the time: both

of us certainly download and try to install many more packages than we end up using,

often over frustration about the fact that a package does not work right out of the box.

For the developers of a project, this is a depressing reality: making software portable

is difficult and requires large amounts of time; yet, it never leads to any recognition.

For example, in deal.II, the previously second largest file – at 7,500 lines of code –

was aclocal.m4, a file that fed the autoconf-generated configuration scripts [46] that

determine operating system and compiler capabilities as well as set up interfaces with

the many external packages deal.II supports.‡ Despite this effort, a non-negligible

fraction of questions on the mailing list is about installation problems and we have

little doubt that deal.II has lost users that simply could not overcome the hurdles of

installing, say, deal.II with interfaces to PETSc, BLAS, and MPI on an older Apple

Mac laptop.

A package that does not install easily on any given system must have unique

functionality for people to use it. An example is the MUMPS (MUltifrontal Massively

Parallel sparse direct Solver) package [2, 3, 39].§ It requires registration before one can

+ The reason for this lack of precompiled packages is the dependency on many other non-standard

libraries and the many different ways those libraries can typically be configured.
‡ Our current, CMake-based [38] rewrite of this functionality is at around 10,500 lines of code.
§ Fortunately, there is an easy-to-use interface to MUMPS through PETSc.
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download it. It then also requires the installation of the BLACS and ScaLAPACK

packages. For all three of these packages, one needs to find, copy and edit Makefile

fragments with non-standard names and none use the configuration and build systems

that virtually every other package has been using for the past 15 or more years (e.g.,

autoconf, automake, libtool or CMake). MUMPS would no doubt have far fewer users

if there was an easier-to-install, open source project with similar functionality.

Once a potential user has gotten past the installation hurdle, a package needs to

be reasonably bug free for people to continue using it. Achieving this aim requires

experienced programmers (or code reviewers) that anticipate common programming

mistakes as well as discipline in writing test cases for an automated test suite (see

Section 3.4). It is an illusion to believe that large-scale software with hundreds of

thousands of lines of code can be bug-free, but there is clearly better and worse software,

and software that often fails to do what a user expects will not be widely used; worse,

software that has gotten a bad reputation in a community will not easily recover even

if the majority of problems are eventually fixed.

We have good reasons to believe that deal.II contains, by and large, few bugs.

We believe that this is true primarily because code is either written or reviewed by very

experienced programmers and, moreover, because of an insistence on using a very large

number of assertions that test for consistency of function arguments and internal state.‖
It also has a very large continuously running test suite.

Finally, we know that those part of the library not well designed in the beginning

or not well covered by the test suite show up much more often in bug reports. For many

of the same reasons we will discuss in the section on documentation below, software

that starts out without a focus on fixing bugs as soon as they are identified will never

be of high quality. Thus, quality needs to be an important aspect of development from

the start. It is our experience that users generally tolerate a small number of bugs as

long as they can get timely help with work-arounds on mailing lists.

2.2. Documentation

Successful software – in particular software libraries and input file-driven applications –

must have extensive documentation, and it must have it right from the start. There is

really no way around it: While one can explore programs with graphical user interfaces

interactively, no practical way other than the documentation exists for programs that

are not interactive. This is particularly true for software libraries that can be assembled

into applications in myriad different ways.

Beyond the classical definition of documentation as a manual, tutorials, and

code comments, a broader and more practical definition would also include emails (in

particular mailing lists and their public archives), lectures and their recordings, and even

conversations. We will cover these alternative documentation forms and the associated

‖ For example, the roughly 160,000 lines of code in the source/ directory contain 38,313 lines with a

semi-colon and 4,574 lines contain an assertion.
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problems at the end of this subsection.

Extent of documentation. Inexperienced authors often believe that they can write

the documentation once functionality is completely developed and software is ready

for release. But this is a fallacy because one always underestimates the amount of

documentation that is necessary. As one data point, consider that of the 478,000 lines of

code in deal.II’s include/, source/ and examples/ directories, roughly 170,000 are in

comments (both documenting algorithms as well as interface documentation that serves

as input for the doxygen tool [21]), representing several years of work despite the fact

that we know of many areas of the library that are inadequately documented. It is not

possible to add even a fraction of this amount of documentation at a later time given the

other demands on our work time and the need to continue implementing new features,

fix bugs, write papers, etc. It also takes far longer to read through code again at a later

time and document it adequately. The only way to achieve sufficient documentation is

to write it concurrently with code development. In fact, it is common to write (at least

part of) the documentation before writing the code. A more strict variation of this is the

design by contract philosophy of software development that advocates defining formal

specifcations as part of the design¶.

Levels of documentation. Classical documentation must come at different levels. From

the bottom up, well thought out projects provide the following information:

• Traditional comments within the code to explain the algorithms used.

• Function-level documentation explaining what the function does (but not how),

the meaning of arguments, what the returned value represents, and pre- and

postconditions.

• In object-oriented paradigms, class-level documentation that explains what a class

as a whole does.

• Modules that give a bird’s eye view of a whole group of classes, explaining how they

act together or how they differ if they offer similar functionality.

• Complete, worked examples in tutorial form.

The latter two are frequently forgotten but they are especially important for large

software libraries since it is typically difficult to establish how different parts of the

library work together by just the myopic look afforded by the first three points above.

Installation instructions (e.g., in the form of a traditional README file) will

complement the categories above. The extent of this list makes clear again that

documentation can’t be written after the fact, simply because there needs to be so

much. We will come back to this in Section 3.4 when discussing how to manage the

complexity of large software systems.

¶ See, for example, http://en.wikipedia.org/wiki/Design_by_Contract.

http://en.wikipedia.org/wiki/Design_by_Contract
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Alternative forms of documentation. Alternative forms of documentation, such as

private emails, lectures, conversations, and mailing lists+ (and their public archives),

have several disadvantages over the forms discussed earlier. The most obvious problems

are the lack of accessibility and applicability. This is also true for mailing lists to some

extent, because the answers are typically tailored to the question and it is sometimes

hard to find the right information in mailing list archives. In other words, documentation

in these forms is produced for a smaller number of people. Because documenting is such

a time consuming effort, it is better spent in writing more accessible forms. A second

problem is that traditional documentation can be updated continuously or at least with

each release. This is much harder on a mailing list as what has been archived as an

answer to a question can not easily be modified again at a later time.

In recent years, new forms of written communication to replace mailing lists are

gaining popularity. The tremendous success of StackOverflow, which also follows the

question/answer form of emails with the main difference of allowing the community to

edit and score answers and questions, can be attributed to the fact that it improves on

accessibility (rephrasing questions, marking questions as duplicates, tagging, etc.) and

allows updating answers over time. We are not aware of computational science projects

that currently use community-editable platforms to replace mailing lists, but they will

certainly find their place in the future.

One sometimes hears that inadequate documentation can be compensated by well

functioning mailing lists or forums where users can ask things that are otherwise unclear.

We believe that this is not true because the number of people who can answer questions

– and the amount of time they have – does not scale with the number of users once a

project becomes successful. If every one of the several hundred deal.II users had only

one question per month, it would be impossible for any of the developers to do anything

but answer questions. In other words, mailing lists do not scale as well as the primary

form of documentation.

The only strategy to avoid this scenario is therefore to provide documentation that

is written once and then accessible to all. While there will always be questions on mailing

lists, a common strategy is in fact not to answer it right away but to realize that behind

every question there is likely a missing piece of documentation – then identify the proper

location, write the documentation and provide a link to it as an answer to the original

question.

A second observation is that many users apparently do not like to ask questions in

a public forum, maybe from a false sense of fear of asking “trivial” questions. While we

always encourage students, for example those in the deal.II classes and short courses

one of us frequently teaches, to sign up for mailing lists, only a small fraction does; we

also have far more (by a factor of 50) downloads than registered users on our mailing

lists. On the other hand, we very frequently find papers using deal.II whose authors

are not on the mailing lists and who have never asked us questions. Clearly, for these

+ We include discussion boards, web forums, etc., in the term mailing list, because they provide the

same form of communication.
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users, mailing lists as an alternative to sufficient documentation would not have worked

and this reality needs to be taken into account when thinking about how adequate

documentation needs to be designed.

Nevertheless, mailing lists are an irreplaceable tool together with traditional

documentation. Interestingly, one can get an impression about the quality of the

documentation (for example the manual) by looking at the kind of questions asked on

these lists. On the deal.II lists, we traditionally have very few questions about specific

things that could and are addressed in the documentation. Instead most questions are

high-level, conceptual questions (for example how one would implement some advanced

feature). Unfortunately, as discussed in Section 2.1, we also get a significant number of

questions about the installation process – a sign that more work should be done in this

regard to better streamline and document the installation.

Technical aspects of documentation. Traditionally, software has been documented in

one large monolithic document or book. For example, PETSc still offers (excellent)

documentation in this format. However, today, the more widely used format appears to

use hyper-linked and shorter documentation in many separate pieces, as it is easier and

faster to read, write, and update. It is also often easier to search.

There appear to have been two primary reasons for this switch: (i) The realization

that it is almost impossible to keep documentation synchronized if it resides in a

file separate from the actual code; think, for example, of the difficulty of keeping

documentation up to date when adding a defaulted argument to an existing function.

(ii) The emergence of tools that can extract documentation from the source code and

process them in a way that produces a large number of cross-referenced, well formatted

and searchable websites. For code written in C/C++, the primary tool for this today is

Doxygen [21]. Programs of this kind extract the relevant information from specially

formatted comments placed immediately next to the entity being documented; it is thus

easy to keep in sync.

While the creation of documentation will always reside primarily with the author

of the code, users can play an important role in expanding it by adding examples,

use cases, or general context. An interesting approach to this end has been taken

by the SciPy/NumPy group: In an effort to increase the quality and quantity of the

documentation, the “SciPy documentation project” (see http://docs.scipy.org/doc/

and the report [20]) focuses on coordinating the creation of documentation as a

community project. Its authors have realized a workflow that allows users (and not

only developers) to discuss, correct, and write documentation from the official website

(in the style of a wiki). The changes are reviewed, and after a final check by developers

applied to the repository.∗

∗ In this project, the documentation is also generated from comments in the source code (similar to

Doxygen). A script automatically generates patches to the source files from the edits on the website.

A developer will then ultimately review and apply the patches.

http://docs.scipy.org/doc/
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Summary. The length of this section and the diversity of the topics touched upon

represents how important we believe it is for projects to offer documentation at many

different levels and in many different forms. Primarily, this is a consequence of the fact

that there is no other way by which a small number of developers can efficiently train

a much larger number of users. It is also a reflection of the complexity of dealing with

large-scale software (a topic we will come back to in Section 3.4). In effect, it is our firm

belief that a software can not survive beyond the time span of the project for which it

was initially written (and the natural turnover of people associated with it) or across

large geographic distances if it is not well documented at many levels.

2.3. Building a community

The prototypical open source project starts as the software a single graduate student

writes for her thesis, or maybe as that of a small group of people in one lab. It is also

almost universally true that projects in scientific computing are led by a very small

group of people – three, four, five – that handle most of the interactions with users,

write a very significant fraction of the code, maintain web sites, develop tests, take care

of documentation, and many of the other things that keep a project running from an

organizational viewpoint. We will call this group of people the community of maintainers

of the project for lack of a better name. It often contains those who started the project.

Around this small set of maintainers grows, in the best case, a community of users.

A point that may not be entirely obvious to those starting a project and thinking about

its future is that these communities are not static and that they can not survive long

term without a third group: a community of contributors. Even more importantly:

these communities do not just happen – they are, and must be, engineered: they require

conscious, sustained efforts to create and grow. Ignoring these two points will lead to

the eventual death of a project.

Let us comment on the first point – that communities are dynamic – first.

As mentioned, many projects start out with graduate students who have few other

obligations and a significant amount of time that they can spend on developing software.

As a project matures, developers grow to become maintainers of a project, spending

more time on the infrastructure of a project and less on the actual development of the

code base. This trend continues as maintainers move along in their careers, spending

time teaching, supervising other students or on committees. Some maintainers may also

move on to jobs or projects that no longer allow them to work on the software. A project

can therefore not survive if it is not able to regenerate its ranks of developers from the

user community and, eventually, also its maintainers from the developer community.

Thus, maintainers need to take care to grow and nurture both their user and

developer communities, and to be willing to share control of the project with new

maintainers. New users are often very hesitant to ask questions on mailing lists or

directly. To keep a user community vibrant therefore requires an attitude that is

inviting: questions should be answered in a timely manner and with an encouraging, not
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disparaging, attitude. This requires patience and time, or, as stated in [22]: humility,

respect, and trust. Similar points are made also in [23].

Lowering the bar. Arguably the most difficult and crucial step is the jump from a user

to a developer. It is critical to “lower the bar” to entry into a project, to increase the

chance of that jump happening. Without an incentive and without encouragement from

the community, only few users are interested enough in contributing back to the project.

There are many ways to encourage contributions:

• Make it easy to submit patches, fixes, documentation, and bug reports (also see

the next paragraph about accepting contributions).

• Promote the mailing lists and the options for contributions.

• Encourage contributions whenever possible, be it on your projects’ front page or in

replies on a mailing list.

• Be friendly, open, and social.

• Provide, help with, and highlight incentives.

Incentives for users can come in a variety of ways, both intrinsically as well as

extrinsically, and they can be stimulated by the developer community. First, users

have practical reasons to contribute: Reporting bugs increases the chance that they

are fixed by someone else; submitting patches takes away the burden of maintaining

them by yourself across releases.] A user’s new features will also be better integrated

and improved upon: With more people using a contributed small feature or tool,

improvements are made that can help with the original author’s project that required

this feature in the first place.

Second, some incentives can be provided by the community: appreciation of the

contributions (on mailing lists, websites, release notes), invitations to workshops, or

something simple like free T-shirts.†† The goal here is to make the contributors realize

that their work matters and is appreciated.

Third, there are many advantages to being a contributor. One gains respect in the

community and gets “known”. Project maintainers can make sure that the “street cred”

that comes from participation in a project leads to involvement in research projects,

invitations to speak, publications, citations, jobs, funding, and influence in general.‡
While these are technical suggestions, lowering the bar ultimately requires

addressing the psychology of users. Project leaders must make users feel that the mere

fact that they are using a software is something of value that they can contribute –

their experience when answering questions on the mailing lists, when improving the

] This is how the second author got into the development of deal.II.
††The SciPy documentation project gave out T-shirts for the top documentation writers.
‡ The last three postdocs in the first author’s group all got their jobs this way. Other contributors

have had the opportunity to have a paid for intercontinental research visit.
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documentation, or when pointing out typos or broken links.§ Of course, the important

point is not just to tell users that their contributions are valued in abstract cases, but

to show them that this is so by helping get their patches accepted quickly.

Accepting contributions. Growing a developer community also involves questions of

control over a project and “how the code should be written”. To start with, we can

observe that occasionally, users simply send pieces of code they have developed for an

application of their own for inclusion into the project. We frequently encourage this sort

of behavior when replying to questions how to do X by saying “There isn’t anything in

the project to do X right now, but it would not be hard to implement. To do it, follow

steps A, B and C. We’d be glad to accept a patch implementing anything along these

lines!”

The question is what to do if a user does, in fact, send a patch. Most programmers

feel a strong sense of ownership in their code, their programming style, and their designs.

Patches by new contributors almost never satisfy a project’s style guide, nor do they

have sufficient documentation; it is even rarer that they satisfy a maintainer’s sense of

“how it should be done”. It is then easy to tell someone who has just contributed her

first patch to modify it to fit the existing style.‖ Our experience is that this is a safe

way to ensure that a significant number of patches will never be submitted in final form.

Furthermore, rejecting patches by inexperience developers on purely formal grounds

is not an encouraging response and not conducive to growing a developer community.

While a large project may be able to afford the luxury of turning away contributions

and contributors, most computational software projects can not.

On the other hand, it is clear that the quality of the code base needs to be

maintained (see Sections 2.1 and 3.4) and most patches by newcomers are simply not

ready to be accepted as is. Our solution to this problem is to spend a significant amount

of our time rewriting other people’s patches, writing accompanying test cases and then

patiently mentoring them why we made these changes. Doing this a few times with a

contributor, she will typically pick up on the things that are necessary for high quality

patches and start doing them with their next patch. As an additional incentive, we have

been rather liberal with granting write access to our code repository after someone has

sent in only a few patches. Many of the patches so committed require some reworking

and thus a close eye on what is happening in our code base. They also occasionally step

on code that the original author is particular proud of and we need to resist the urge

to undo the damage done to this marvel of programming art. However, we feel that

the gratification of being able to commit patches under a contributor’s own name is an

§ We can back this up with experience: at least twice in the history of deal.II, users have sent small

patches with typo fixes; having seen their patches accepted quickly and with gratitude, they came back

with scripts that spell-checked the entire collection of in-code comments and both later contributed

significant new functionality.
‖ As an example of such behavior, the GNU Compiler Collection (GCC) project regularly turns away

patches because the accompanying entry to the ChangeLog file isn’t appropriately formatted. No

doubt this has cost the project a significant number of potential developers.
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important incentive to grow the community of developers. All of this of course goes

hand-in-hand with Weinberg’s observation that software written by developers that are

not territorial about their work tends to improve dramatically faster than elsewhere [48].

There are other ways by which one can encourage active participation in a project.

For example promoting openness by discussing design decisions on public forums

rather than in private mails, making the code repository with the current development

sources readable for everyone, and avoiding “inner circle” conversations provides a more

welcoming atmosphere to those interested in contributing to a project.¶

Summary. A summary of these views is that a project needs a community of developers

but that such a community does not happen by itself: it requires active grooming of

contributors and a set of strategies likely to encourage users to contribute code, and to

encourage patch authors to continue offering patches. Leading an open source software

project to success therefore requires much more than just being a good programmer: it

also requires considerable social skills as well in gently encouraging users inexperienced

in the open source ways to participate in a project. Ultimately, small niceties and

politeness matter a great deal and can help bring people into a project, while a lack

thereof almost certainly turns newcomers away. Furthermore, being polite costs very

little, unlike “material” incentives such as T-shirts or workshop invitations.

3. Other reasons determining success

While we feel that the three topics outlined in the previous section are the most

important indicators of whether an open source project will be successful or not, there

are clearly other questions that enter the equation. Those are addressed in the following.

3.1. Timing

An interesting point made in Malcolm Gladwell’s book Outliers: The Story of Success

[27] is that people are successful if their skills support products in a marketplace that

is just maturing and where there is, consequently, still little competition. The same is

certainly true for open source software projects as well: Projects that pick up a trend

too late will have a difficult time thriving in a market that already supports other, large

and mature projects.

This is not to say that it is always the first project that wins the competition: For

example, the Parallel Virtual Machine (PVM, [26]) project predated the Message Passing

Interface (MPI, [24]) by some two years (1989 vs. 1991), but the advantages of the latter

quickly allowed it to supplant the former. Yet, despite the immense expansion of parallel

computation both in the number of machines available as well as in the number of cores

¶ This is a frequently made point, most notably found in the influential 1997 essay “The Cathedral and

the Bazaar” already mentioned above. Developing and discussing development in the open corresponds

to Raymond’s preferred bazaar model.
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per parallel machine since then, no other parallel programming paradigm has replaced

MPI – even though it is universally acknowledged that MPI is a rather crude way of

programming these machines and that MPI might not be successful for machines much

larger than the ones available today. The reason for MPI’s dominance lies in the fact

that it appeared on the market at just the right time: It offered a mature, portable,

and widely available technology when the scientific computing community started to

use parallel computing on machines that were suddenly available to almost everyone.

Other upstart projects that might have offered better functionality could not compete

with this head start in functionality and size of community, and consequently remain

confined to niches; an example might be Charm++ [18].

Other examples for this in the field of scientific computing abound:

• The PETSc library [4,5] for parallel sparse linear algebra (and other things) dates

back to the mid-1990s when distributed parallel became widely available for the

first time. There have been any number of other libraries with similar aims since;

however, with the possible exception of Trilinos [30,31] (which, like PETSc, has

a significant institutional backing from the US Department of Energy), no other

library has been able to build as large a community as PETSc’s.

• The first widely used libraries upon one can build solvers for partial differential

equations were PLTMG [11] and DiffPack [16, 35]. However, they were difficult

to adapt to the new mantra of adaptive mesh refinement (in the late 1990s, say

after the publication of the influential book by Verführt [47]) and all the widely

used libraries that today provide functionality for modern finite element methods

date from around the year 2000: Cactus [17, 28], libMesh [33], Getfem++ [44],

OOFEM [42], DUNE [13], or the deal.II library [7]. While one can find an almost

infinite number of other projects in the same direction that have been started since

then, the only widely used recent addition to this field is FEniCS/DOLFIN [36,37],

primarily due to its ability to interface with the Python programming language and

the resulting ease of use.

All this, of course, does not come as a surprise: Why would one use a small start-up

project if extensive, mature, well-tested libraries with significant communities already

exist, unless the existing projects fail to incorporate important, new algorithms? In

other words, a project can only be successful if it serves a market that is not yet well

served by existing projects. Just writing yet another C++ finite element library, even

if well thought out, will not produce a project that can create a thriving community

around its original developers.

At the same time, the important metric is not necessarily pure functionality but how

it works from a user’s perspective. An example may be the fact that the GNU Compiler

Collection (GCC) lost a significant share of its (potential) developer community to

the much smaller LLVM project: while the latter may have far fewer targets or

optimizations, its much clearer code structure and more inclusive and welcoming policies

have made it more attractive to new developers.
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3.2. Getting the word out

A point that may be obvious is that even good projects will not be successful if nobody

knows about them. There are of course many ways to avoid this. The ones we believe

are important are well-structured, informative websites that give an overview of what

the project does and provides, and release announcement on mailing lists widely read

by those in the relevant fields. Furthermore, mentioning and referencing a project in

talks and publications – by name and with a link to a website – ensures that people see

what a project is used for in a concrete setting, alongside with results they are hopefully

impressed by.

3.3. Making a project usable

As discussed in Sections 2.1 and 2.2, a project must have sufficiently high quality and be

well documented. This is especially true for software libraries and applications driven

by input files. However, there is more to it: Applications built on such libraries need

to be developed and they may need to be maintained for a potentially long time as

the underlying software basis grows and changes. Thus, there are both short-term

(developing software based on a project) and long-term needs (maintaining it in view of

changes in the underlying project) that need to be addressed. Note that only the latter

point is relevant to projects that provide user interface-driven applications.

3.3.1. Support for developing with a project. Developing software based on large

libraries (or for applications with complex input files) can be a difficult task. This

is particularly true when using programming languages with relatively poor support

for error messages (such as the template heavy use of C++ in many of today’s

computational libraries). In order to support their users, projects therefore do

well to think about ways that make development easier, beyond providing adequate

documentation (Section 2.2) and managing complexity (Section 3.4).

In particular, we have found the following strategies particularly useful:

• Catalog common use cases: While libraries may offer a large number of parts that

can be put together in various ways, it is not always trivial to figure out how

exactly that should happen. An example would be to build a multigrid solver for

a coupled diffusion-advection-reaction problem using multiple processors coupled

via MPI: the classes dealing with the mesh, the finite element discretization, the

parallel matrices and vectors, the linear solvers, and the multigrid components may

individually be well documented, but how they interconnect and talk to each other

may be harder to determine. A solution to this is to catalog common use cases by

providing tutorials that demonstrate the solution of prototypical problems – in the

current case maybe the sequential multigrid solution of a scalar diffusion problem,

the solution of a coupled problem on a single processor, and the demonstration

of a solver working in practice. This provides worked out examples from which
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users can copy and paste code fragments to assemble their own programs, and that

already demonstrate the connections between different classes.

This appears to be a common approach: Both deal.II and PETSc have extensive

and well documented sets of tutorial programs, and so do many other libraries.

For input-driven applications, a similar approach is possible. For example, the

Aspect code [8,34] has “cookbooks” that consist of model input files for a variety

of situations and that are discussed extensively in the manual. Similar cookbooks

exist in other well-written codes (see, e.g., [1]).

• Extensive FAQs: Certain questions come up frequently and the answers to some

of them do not immediately fit into the documentation of a particular piece of a

software library or application. An example is how to debug a particular kind of

bug – say, a deadlock in a parallel computation. Such questions can be collected

on Frequently Asked Questions (FAQ) pages. These are typically much more

visible from a project’s homepage than the details of a technical documentation

and therefore provide an easy-to-access forum for common questions.

• Help with debugging: We all spend far more time debugging code than actually

writing it. Support for debugging is therefore an important contribution towards

making a library usable. In the case of deal.II, we have found that having a

large number of assertions checking function arguments for validity throughout the

code (see the footnote in Section 2.1) and printing a backtrace whenever such an

assertion is triggered allows us to find the vast majority of bugs in user code with

minimal effort. PETSc follows a similar approach.

For better or worse, many novice users – even those with prior programming

experience – are not used to using debuggers. Furthermore, they are typically

entirely unprepared to finding the causes of performance bugs or bugs in parallel

programs. To help such users, we provide significant help in our FAQs and through

other training modules.

3.3.2. Backward compatibility. In developing software, one is frequently torn between

maintaining backward compatibility and moving past things one now recognizes as

misconceived or in the way of progress in other areas. The price one pays for

breaking compatibility is breaking user programs and other libraries (in the case of

software libraries), input files (in the case of programs that are driven by input files)

or user workflows (in the case of programs that are operated interactively, such as

visualization programs). Software libraries are arguably the most difficult to keep

backward compatible because users can interact with them through so many more entry

points than, for example, a program with a graphical user interface.

There are different approaches to this problem employed in the community. If a

project accepts breaking compatibility often, less of the developers’ time is spent on

maintaining deprecated features or compatibility wrappers. The result is a project with

a smaller, cleaner, and often better interface. Conversely, if backwards compatibility

is important, the price to pay for sticking with existing interfaces for too long are
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crufty interfaces and a larger effort implementing new functionality on old, unsuitable

interfaces. The risk in this trade-off when moving too quickly are users who either get

turned away from the project or hesitate to upgrade to the most recent version.

In deal.II, we try very hard to maintain backwards compatibility between releases

for a long time. We mark features as “deprecated” in the documentation and the

interface (using language features), to give our users a less painful way to upgrade their

code. Often, functions get removed only after having been marked deprecated for years

(typically in major x.0 releases). There appears to be little disagreement within our user

base with this approach. It has also, over the years, not required an incredible amount

of work to maintain older interfaces.

Other projects have taken different approaches. On the one hand, Trilinos

[30, 31] has even codified their approach and many other aspects into a software

development strategy, the Tribits Lifecycle Model [12], that strongly encourages

maintaining backward compatibility. Linux follows a similar model, with its project

leader Linus Torvalds declaring “So any time any program (like the kernel or any other

project), breaks the user experience, to me, that’s the absolute worst failure that a

software project can make.”‡ On the other extreme, PETSc [4, 5] has traditionally

leaned much more in favor of fixing old warts in their interfaces.§

3.4. Making a project maintainable: Managing complexity and correctness

Writing large pieces of software is much more than just writing the code and making

sure that it is correct at that moment. It also requires to think about how what one

does today affects writing code and ensuring correctness in the future.

This requires managing the complexity of software, and in particular to keep it as

low as possible. Complexity can be described in many ways, and examples may be the

best way to deal with this to be concrete:

• Standardize: Code is easiest to understand for a reader if it uses clear conventions.

For example, with few exceptions, functions in deal.II that return the number

of cells, degrees of freedom, rows in a matrix, etc, all start with the common

name prefix n ; variables denoting such numbers of somethings have type unsigned

int; input arguments of functions come before output arguments; input arguments

of functions are marked as const; class names use CamelCase whereas function

names use underscore notation. A slightly more obscure example would be

to consistently refer to the names of design patterns [25] in the documentation

whenever applicable. The point of such conventions is not that they are better than

any other convention; it is simply that following any convention consistently makes

the code easier to understand because using it is a form of implicit documentation.

‡ A summary of how Linux handles backward compatibility is provided at http://felipec.

wordpress.com/2013/10/07/the-linux-way/.
§ To the point where the name KSPCHEBYCHEV was changed into KSPCHEBYSHEV between PETSc 3.2

and 3.3 without providing any kind of backward compatibility. PETSc has also occasionally changed

the number, types, or order of function arguments between versions.

http://felipec.wordpress.com/2013/10/07/the-linux-way/
http://felipec.wordpress.com/2013/10/07/the-linux-way/
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• Modularize: Separating concerns is a widely used technique to manage complexity.

Without going into more detail, methods to achieve this are to minimize the

public interfaces of classes, to use inheritance to separate interfaces from particular

implementations, or to use namespaces to make clear which groups of classes are

meant to interact with each other.

• Avoid duplication: Since performance is so important in scientific software, one is

often tempted to implement code with similar but not exactly the same functionality

more than once, specialized to their purpose, rather than implementing it once in

a more generic but likely slower way. A trivial example would be a function that

interpolates boundary values onto a finite element space for just those parts of

the boundary with one particular boundary indicator versus a separate function

that takes a list of boundary indicators. The first of these functions could be

implemented by calling the second with a one element list; the second could

call the first repeatedly; or they could simply be implemented twice for maximal

computational efficiency.

While one may be tempted to go with the third way in a small project, such

duplication will quickly turn out to be difficult to manage as a project grows and

as the code needs to be adjusted to new functionality. For example, in deal.II

we had to adjust this kind of function when we introduced meshes that can be

stored in parallel and where each processor no longer knows all cells. If a function

is duplicated, this implies that one has to find more places where this adjustment

has to be made, with the potential for more bugs and the potential for divergence

between duplicated functions if the adjustment is forgotten in one of them.

The price to pay for avoiding duplication is often slightly slower code. However, it

is our experience that the long-term cost of duplication in terms of maintainability

of a code base are much higher in all but the most computationally expensive

functions.

• Do it right, right away: One is frequently tempted to only implement a narrow case

one is currently interested in. For example, in the finite element method one can use

polynomials of different degree. The first implementation of a new feature typically

assumes linear polynomials. However, software libraries are used in myriad and

often completely unexpected ways and one can be almost certain that someone will

want to use the function in question for a more general case at one point, using

polynomials of higher degree. While there is no sense in trying to be too generic,

there is also a cost to having to extend a design at a later time, possibly requiring

changes to the interface and, in the worst case, having to offer different interfaces

for the simple and the more general cases. It is our experience that it is well

worth investing the time to think about what a proper interface would be for the

general case before implementing a narrower one. If it is not feasible to implement

the general case right away, a common strategy is to design the interface for the

general case but in the implementation abort the program if it is called for a case

for which the algorithm has not been written yet, providing a note that it hasn’t
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been implemented yet. This way, the structure of what needs to be implemented is

already there and designed, even if the body of the code isn’t yet.

All of this results from the realization that in large software projects, no single person can

have a complete overview of the entire code base. Code must therefore be structured in

a way so that individual developers can work on their area of expertise without having to

know about other modules, and for new developers to be able to be productive without

first having to get a global overview.

The second issue about maintainability is to manage correctness in the long term.

It is of course possible to verify the correctness of a new function by applying it to

the case it was written for. But if it interacts with other functions, or extends an

earlier one, does previous functionality continue to work as expected? The only way to

ensure this consistently is to write test suites that are run periodically and that verify

that functionality that existed at the time a test was written still exists unaltered. This

turns out to be far easier for software libraries than for input-file driven applications and,

in particular, than for interactive applications. Many libraries therefore have extensive

test suites covering most of the existing functionality. As an example, for deal.II we

run some 2,700 tests with every change to the code repository and they have uncovered

many bugs and changes in functionality we have inadvertently introduced in patches.

Like documentation, test suites covering a large code base can not be written after

the fact – they must be written concurrently with the implementation. In fact, it is

often helpful to write the test before the implementation of the functionality it verifies

– a process often referred to as “test-driven development” [15] and commonly accepted

as good software development practice in many software development communities. In

either case, waiting to write tests until a later time is not an option: even if it were to

take only 20 minutes to write a test and verify that its output is correct, then 2,700

tests represent an investment of 900 hours, i.e., 6 months of work for someone with no

other obligations at all. Nobody can invest even a fraction of this much time in addition

to other academic duties.

3.5. License

Which license a project chooses is an often discussed topic among developers, but it turns

out to be one of little actual interest to the vast majority of users in academia and other

research settings as long as it falls under the “open source” label.‖ Nonetheless, in the

long run choosing the right license is an important decision, primarily for two reasons:

• Changing the license a software is under at a later time is an incredibly difficult

undertaking. This is because every contributor up to that time – several dozen, in

our case – has provided their contribution under the old license and will need to

be contacted and convinced to re-license the code under the new license. In the

case of deal.II, the process of changing from the Q Public License (QPL, an open

‖ As established, for example, by the Open Source Initiative, see http://opensource.org/.

http://opensource.org/
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source license popular in the late 1990s when the field of widely used licenses was

much larger than it is today) to the GNU Lesser General Public License (LGPL)

took more than 2 years.

• The available open source licenses in essence differ in how much control the authors

retain over their source code. For example, the QPL requires everyone modifying

the software to license their changes back to the project. The GNU General Public

License (GPL) does not require this but still requires that those building software

on top of a GPL-licensed library make their own software available under the GPL

as well. The LGPL requires none of this and thereby allows for closed-source,

commercial use. There are also more permissive licenses with minimal restrictions,

most notably the various BSD licenses. The question of which license to choose is

therefore also a question of how much control one wants to retain over how one’s

software is used.

This last point makes it clear that the question of license is much more important for

libraries than for applications because they are meant to serve as the basis for further

development.

Most software developers are attached to the fruits of their labor, as are we to our

project. Thus, our initial instinct was to go with the more restrictive license (the QPL)

because it is, psychologically, difficult to give up control. However, retaining rights can

be a hollow victory if it does not translate into tangible benefits. For example, in the

15 years of work on deal.II we have not gotten a single patch as a result of the QPL

license. Consequently, it would not have made a practical difference had we gone with

the GPL instead. Worse, we have had maybe a dozen inquiries over the years from

companies who would like to use deal.II but didn’t see how to create a business model

given the current license. While one could argue that that is their loss, upon closer

thought it is ours, too: These companies would have provided a job market for people

with experience in our software, and they might have provided back to the project

in the form of code, feedback on development direction, resources, or co-financing for

workshops. Thus, in the end, our insistence on retaining rights guaranteed by the QPL

got us the worst of all outcomes: all abstract rights, no concrete benefits.

As a consequence of this realization, we recently switched the license under which

deal.II is distributed to the more liberal LGPL – an arduous process, as explained

above.

4. Is it worth it? Academic careers with open source

Most computational open source software is written either at universities or at large

research facilities such as the national labs in the United States. In the latter, forging a

career writing software is certainly a possibility. In academia, most software is written

by graduate students or postdocs, and we are occasionally asked whether making their

projects open source is a worthwhile career consideration.
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We would like to answer this question with an enthusiastic yes since we, along with

many of our colleagues, believe that science is better served with open source software

– in much the same way as we insist that a theorem is so much better if the proof is

also provided to the public – as both a way to verify the correctness of a statement and,

more importantly, as the basis for further experiments that need to start from scratch

again. At the same time, for junior scientists with ambitions for a career in academia,

this is of course only an option if it provides material for a resume that allows finding

a faculty position and later getting tenure.

As laid out in the previous sections, it is not sufficient – by a very large margin – to

simply put a piece of software onto a website. Such software will of course be available,

but it will not be widely used and its author will be able to derive only little credit from

it. Rather, a very significant time investment is necessary to make a project successful

and, no doubt, papers will remain unwritten over it.¶ Given the factors explained above,

there is also rarely a guarantee that a project will make it in the long term whereas

the tenure review is guaranteed to come at one point. Trying your hand at your own

open source project is therefore a high risk–high reward, or maybe even just a high

risk–doubtful reward, proposition.

Whether a career based on software can work out is difficult to predict. Between

the two of us, we only have one sample so far, and the following is therefore a personal

account of the first author. When I started deal.II in 1997, I was blissfully ignorant

of the risks. Since then, I have gone from undergraduate to full professor and I have

learned a bit about what counts for a resume at a major research university – and

writing software counts for little, even in a case like deal.II with several hundred users

from practically every corner of the world and well-documented impact.+ Of course, this

is not new and a case for a software-based career track at universities has occasionally

been made [14].

For most of my career, I have therefore tried to have more than this one leg to stand

on. While I have been tremendously lucky that what I do with deal.II was certainly

one factor in getting a job and getting promoted – and that I enjoy, more than almost

any other aspect of my job, writing software and interacting with the community that

has sprung up around it – I am under no illusion that this alone may have sufficed to

forge a career. Anecdotal evidence from others in the field points in the same direction.

As a consequence, I am usually rather muted in my support to students asking whether

they should make their project open source. There are certainly safer ways to plan

¶ We estimate that we spend 30 hours per week on working on deal.II between the two of us. Of this,

at most 10 hours is spent on developing new functionality. The remainder is on answering questions,

setting up and maintaining the various web servers, regression test scripts, and other services as well

as re-writing patches sent in by others.
+ For example, we have tried very hard to find as many publications written with the help of deal.II;

see the list of around 400 referenced at http://www.dealii.org/developer/publications/index.

html. A world map showing the locations of downloads indicates practically every major research

center as well as many locations one could not have predicted (e.g., French Polynesia, Mauritius and

Guam).

http://www.dealii.org/developer/publications/index.html
http://www.dealii.org/developer/publications/index.html
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an academic career, even if my personal opinion is that there are few that are more

rewarding.

5. Conclusions

Despite the common perception that the success of a software package is determined by

(i) whether the application it is written for is interesting, and (ii) whether the authors

are good programmers, we hope to have shown that there are, in fact, many more

factors involved. In particular, they involve understanding how users interact with a

piece of software (through installation, learning to use it through documentation, and

continued development in view of a base that is changing over the years), and that

software projects are embedded in a set of communities of people that are dynamic and

that can be actively engineered. Creating and maintaining a successful piece of scientific

software therefore requires skills that extend far beyond being a good programmer. It

is also an enormous amount of work in addition to just writing the code itself.

Given the importance software has in computational science, it is interesting to

realize how little weight we give it in designing our curricula as well as in our decisions

on hiring, tenure, and promotion. We believe that this is largely because there are

few concrete metrics to measure software (e.g., the number of papers written about a

software is typically relatively small; however, the number of papers written with the

help of a software is likely a good indicator of its impact; see also [32]). Likewise, until

recently, non-mission-specific funding agencies did not typically fund projects with the

explicit goal of creating or extending open source software. It will be interesting to see

whether academic and funding perceptions on computational software will change in

the future.
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