
The deal.II Library, Version 8.5

Daniel Arndt1, Wolfgang Bangerth2, Denis Davydov3, Timo Heister4, Luca
Heltai5, Martin Kronbichler6, Matthias Maier7, Jean-Paul Pelteret8, Bruno

Turcksin∗9, and David Wells10

1Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer
Feld 205, 69120 Heidelberg, Germany. daniel.arndt@iwr.uni-heidelberg.de

2Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874,
USA. bangerth@colostate.edu

3Chair of Applied Mechanics, University of Erlangen-Nuremberg, Egerlandstr. 5, 91058
Erlangen, Germany. denis.davydov@fau.de

4Mathematical Sciences, O-110 Martin Hall, Clemson University, Clemson, SC 29634, USA.
heister@clemson.edu

5SISSA, International School for Advanced Studies, Via Bonomea 265, 34136, Trieste, Italy.
luca.heltai@sissa.it

6Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15,
85748 Garching, Germany. kronbichler@lnm.mw.tum.de

7School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street SE,
Minneapolis, MN 55455, USA. msmaier@umn.edu

8Chair of Applied Mechanics, University of Erlangen-Nuremberg, Egerlandstr. 5, 91058
Erlangen, Germany. jean-paul.pelteret@fau.de

9Computational Engineering and Energy Sciences Group, Computional Sciences and
Engineering Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., TN 37831, USA

turcksinbr@ornl.gov
10Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY

12180, USA wellsd2@rpi.edu

Abstract: This paper provides an overview of the new features of the finite element library
deal.II version 8.5.

1 Overview

deal.II version 8.5.0 was released April 6, 2017. This paper provides an overview of the new
features of this release and serves as a citable reference for the deal.II software library version
8.5. deal.II is an object-oriented finite element library used around the world in the development
of finite element solvers. It is available for free under the GNU Lesser General Public License
(LGPL) from the deal.II homepage at http://www.dealii.org/.

The major changes of this release are:

– The CellDataStorage class provides a mechanism to store and communicate user-defined
data on each cell.

∗This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with
the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. The Department of Energy will provide public
access to these results of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

http://www.dealii.org/


2

– The MappingManifold class provides mappings between the reference cell and a mesh cell
that is “exact”, rather than the usual polynomial approximations of a manifold.

– Various improvements for high-order elements, including a switch of support points in
FE_Q and FE_DGQ to Gauss-Lobatto support points, stable evaluation of high-order Legendre
polynomials, and several bugfixes for high-order polynomial mappings defined through
the MappingQ class.

– The LinearOperator class has been extended by a generic “payload” mechanism that allows
the attachment of arbitrary additional information to a LinearOperator.

– A dedicated physics module has been created to provide some standard definitions and
operations used in continuum mechanics.

– The FE_Enriched class implements the operation of enriching the finite element space of an
underlying element.

– The FESeries namespace provides expansions of a finite element solution in terms of
different, hierarchical bases.

– New tutorial programs step-55, step-56, and step-57; as well as updates to step-27, step-37,
and step-44. In addition, the separate code gallery of deal.II has gained a number of new
entries.

– Static code analyzers are valuable tools to improve and maintain the quality of the code in
our library in addition to build and regression tests for a variety of setups using CDash.
This release was tested with Cppcheck, PVS-Studio and Coverity-Scan.

– More than 240 other features and bugfixes.

The more important ones of these changes will be detailed in the following section. Information
on how to cite deal.II is provided in Section 3.

2 Significant changes to the library

This release of deal.II contains a number of large and significant changes that will be discussed
in the following sections. It of course also contains a vast number of smaller changes and added
functionality; the details of these can be found in the file that lists all changes for this release, see
[1]. (The file is also linked to from the web site of each release as well as the release announcement.)

2.1 The CellDataStorage class and friends

The CellDataStorage templated class is an integrated mechanism to store a vector of user-
defined data within each cell, such as a coefficient at each quadrature point. Although the same
was previously achieved through the use of a cell’s user_pointer, it required users to manage
this data themselves, including transfer of this data if ownership of a cell is transferred from one
processor to another in parallel computations. Instead, this data is now treated as a first-class
citizen in deal.II.

CellDataStorage can work with arbitrary kinds of data defined to live on a cell as long as the
corresponding data type implements a default constructor. Additionally, when a user’s custom
data type is derived from TransferableQuadraturePointData and thereby implements certain
interfaces, then the parallel::distributed::ContinuousQuadratureDataTransfer class can
transfer this data during h-adaptive refinement from parent cell to children (interpreting the data
on quadrature points as discrete representations of an underlying continuous field), as well as
from one processor to another during repartitioning.

https://cdash.kyomu.43-1.org/index.php?project=deal.II
http://cppcheck.sourceforge.net/
https://www.viva64.com/en/pvs-studio/
https://scan.coverity.com/
https://www.dealii.org/8.5.0/doxygen/deal.II/changes_between_8_4_and_8_5.html


3

2.2 The MappingManifold class

The MappingManifold class implements the functionality of the Mapping interface for manifold
conforming mappings. In other words, instead of using polynomial approximations of the objects
that describe the boundaries (or interiors) of cells, this class computes the transformation between
the reference and real cell by exploiting the geometrical information coming from the underlying
Manifold object.

When using this class, quadrature points lie on the exact geometrical objects, and tangent and
normal vectors computed are tangent and normal to the underlying geometry. This is in con-
trast with the MappingQ and MappingQGeneric classes, which approximate the geometry using a
polynomial of some order, and then compute the normals and tangents using the approximated
surface.

The class currently only implements the information that relates to the mapping itself, as well to its
derivatives (such as the Jacobian of the mapping, or the determinant thereof). Information related
to higher order derivatives – such as the Hessian of the mapping – will result in an exception.

2.3 Extension of the LinearOperator class

We have extended the LinearOperator class by a generic “payload” mechanism that allows for
the attachment of arbitrary additional information to a LinearOperator. This was achieved by
introducing a generic Payload base class. The main use case of the new mechanism is to extend
the LinearOperator class to seamlessly exploit the native features and operations offered by
external linear algebra libraries. We have thus developed a TrilinosPayload class that provides
full support for the suite of Trilinos parallel iterative solvers and preconditioners.

A particularly interesting case is the construction of an inverse_operator. Whereas previously
only deal.II’s built-in solvers were compatible with this operator, one can now also select those
offered by Trilinos. This has been achieved by using the Epetra_Operator as the basis for the
TrilinosPayload, for which the result of standard and composite operations involving forward
(Apply()) and inverse (ApplyInverse()) matrix-vector multiplication are collated using lambda
functions.

We envisage that, in the future, similar extensions can be implemented for the PETSc iterative
solvers.

Another additional in this release related to the LinearOperator suite is the definition of a
schur_complementoperator and its associated condensation and post-processingPackagedOperations.
An operator representing the Schur complement of a block system can be declared and, through
the delayed evaluation offered by PackagedOperations, reused on any number of vector systems.

2.4 The physics module

We have created a dedicated physics module to facilitate the implementation of functions and
classes that relate to continuum mechanics, physical fields and material constitutive laws. To
date, it includes transformations of scalar or tensorial quantities between any two configurations
(by user-specification of a linear map F), and some definitions typically utilized in both linear and
finite-strain nonlinear elasticity.

The Physics::Transformations namespace offers push-forward and pull-back operations in the
context of contravariant, covariant and Piola transformations, as well as rotation operations for
the Euclidean space. Although these transformations are defined in a general manner, one typical
use of them in finite-strain elasticity would be the determination of the Cauchy stress tensor
σ = σ (x) defined at a spatial position x ∈ B from its fully referential counterpart, namely the
Piola-Kirchhoff stress tensor S = S (X) computed at the material coordinate X ∈ B0. By choosing

F (X) =
∂x (X)
∂X

, this is achieved through the action of the Piola push-forward σ =
1

det F
F · S · FT.



4

32 128 512 2048 8192 32k 147k

10−2

10−1

100

101

Number of cores

So
lv

er
ti

m
e

[s
]

strong and weak scaling, continuous Q3 elements

8B cells
1B cells

128M cells
16M cells
2M cells

linear scaling

56 224 896 3584 14336

10−2

10−1

100

101

Number of cores

discontinuous Q3 elements

old, 16M cells
new, 16M cells
old, 2M cells
new, 2M cells
old, 256k cells
new, 256k cells

Figure 1: Scaling of deal.II’s geometric multigrid algorithms on SuperMUC. Each line corre-
sponds to a strong scaling experiment, increasing the number of processor cores for a fixed-size
problem. Comparing corresponding data points on different lines yields weak scaling informa-
tion.

In the Physics::Elasticity::Kinematics namespace, a selection of deformation, strain and
strain rate tensors are defined. The Physics::Elasticity::StandardTensors class provides
some frequently used second and fourth order metric tensors, and defines a number of referen-
tial and spatial projection operators and tensor derivatives that are commonly required in the
definition of material laws.

The updated step-44 tutorial program demonstrates the use of the physics module in the context
of a solid mechanics problem. Additional updates to this tutorial include application of the new
CellDataStorage class to store and retrieve local quadrature point data. An alternative approach
to solving the linear system, previously performed by global static condensation of two of the
three field variables, has been implemented using the LinearOperator class.

2.5 Scalability of geometric multigrid framework

For the new release, the geometric multigrid facilities in deal.II have been thoroughly over-
hauled regarding their scalability on large-scale parallel systems. During this process, a geometric
multigrid implementation based on the fast matrix-free kernels from [28] has been benchmarked
on up to 147,456 cores. The fast matrix-vector products revealed several scalability bottlenecks
in the other multigrid components, including unnecessary inner products inside the Chebyshev
smoother andO(nlevels) global communication steps during the restriction process rather than the
single unavoidable global communication step inherent to going to the coarsest grid and the coarse
solve. We implemented new matrix-free transfer implementations called MGTransferMatrixFree
that can replace the matrix-based MGTransferPrebuilt class for tensor product elements. Besides
better scalability than the Trilinos Epetra matrices underlying the latter, the matrix-free transfer
is also a much faster for high-order elements with a complexity per degree of freedom of O(dp) in
the polynomial degree p in d dimensions rather than O(pd) for the matrices.

The scalability of the improved geometric multigrid framework is shown in Fig. 1, including
a combined strong and weak scaling plot in the left panel using continuous Q3 elements with
57 million to 232 billion degrees of freedom for discretizing the Laplacian. Along each line, the
same problem size is solved with an increasing number of cores, whereas different lines are a
factor of eight apart and always start at 3.5 million degrees of freedom per core with an absolute



5

performance of around 650,000 degrees of freedom per core and second. Almost ideal scalability
down to approximately 0.1 seconds can be observed also on 147k cores. The right panel of Fig. 1
shows the effect of the aforementioned algorithmic improvements on a setup with discontinuous
DG elements, clearly improving the latency of the multigrid V-cycle.

The updated step-37 tutorial programs presents the updated algorithms and the MPI-parallel
multigrid setting with matrix-free operator evaluation.

2.6 Matrix-free operators

In order to facilitate the usage of matrix-free methods, a MatrixFreeOperator::Base class has
been introduced, implementing functionality for matrix-vector products and the necessary op-
erations for the interface residuals for multigrid on adaptively refined meshes (see [25]). Fur-
thermore, the class is compatible with the linear operator framework and provides an inter-
face to a Jacobi preconditioner. Derived classes only need to implement the apply_add()
method that is used in the vmult() functions, and a method to compute the diagonal entries
of the underlying matrix. The MatrixFreeOperator namespace contains implementations of
MatrixFreeOperators::LaplaceOperator and MatrixFreeOperators::MassOperator.

The updated step-37 tutorial program makes use of these facilities and explains their usage in
detail. Using the matrix-free mass operator, VectorTools::project has become much faster than
the previous matrix-based approach for elements supported by MatrixFree and also works for
parallel computations based on MPI.

2.7 The FE_Enriched class

The FE_Enriched finite element implements a partition of unity finite element method (PUM)
by Babuska and Melenk which enriches a standard finite element with an enrichment function
multiplied with another (usually linear) finite element. This allows including a priori knowledge
about the partial differential equation being solved in the finite element space, which in turn
improves the local approximation properties of the spaces. Programs can also use enriched and
non-enriched finite elements in different parts of the domain.

The DoFTools::make_hanging_node_constraints() function can automatically make the re-
sulting space C0 continuous. The existing SolutionTransfer class can be used to transfer the
solution during h -adaptive refinement from a coarse to a fine mesh under the condition that all
child elements are also enriched.

2.8 The FESeries namespace

The FESeries namespace offers functions to calculate expansion series of the solution on the
reference element. Coefficients of expansion are often used to estimate local smoothness of the
underlying finite element field to decide on a h- or p-adaptive refinement strategy. Specifically,
FESeries::Legendre calculates expansion of a scalar finite element field into series of Legendre
functions on the reference element, whereas FESeries::Fourier calculates Fourier coefficients.
Programs using this functionality have to specify the required number of coefficients in each
direction as well as provide a collection of finite elements and quadrature rules; these will be used
for the calculation of the transformation matrices.

The updated step-27 tutorial program demonstrates the use of FESeries::Fourier.



6

2.9 New and updated tutorial programs

In addition to the updated tutorial programs mentioned in the previous section, this release of
deal.II includes three new tutorials:

– step-55 explains how to solve the Stokes equations efficiently in parallel. It is a good
introduction to solving systems of PDEs in parallel, discusses optimal block preconditioners,
and demonstrates other aspects like error computation. Inverses of individual blocks of the
linear system are approximated with an algebraic multigrid preconditioner.

– step-56 shows how to apply geometric multigrid preconditioners on a subset of a system of
PDEs. The problem solved here is the Stokes equations, like in step-55.

– step-57 solves the stationary Navier-Stokes equations. The nonlinear system is solved
using Newton’s method on a sequence of adaptively refined grids. The preconditioner is
again built on a block factorization of the saddle point system like in step-55 and step-56,
but the non-symmetric terms stemming from the nonlinear convective part requires more
sophisticated solvers. The benchmark problem, flow in the 2d lid-driven cavity, requires a
continuation method for high Reynolds numbers.

In addition to tutorials, deal.II has a separate “code gallery” that consists of programs shared
by users as examples of what can be done with deal.II. While not part of the release process,
it is nonetheless worth mentioning that the set of new programs since the last release covers the
following topics:

– Quasi-static quasi-incompressible visco-elastic material behavior;

– Multiphase Navier-Stokes flow;

– The evolution of global-scale topography on planetary bodies;

– Goal-oriented elastoplasticity.

2.10 Incompatible changes

The 8.5 release includes around 20 incompatible changes; see [1]. The majority of these changes
should not be visible to typical user codes; some remove previously deprecated classes and func-
tions, and the majority change internal interfaces that are not usually used in external applications.
However, three incompatible changes are worth mentioning:

– High-order Lagrange elements, both continuous FE_Q and discontinuous FE_DGQ types, now
use the nodal points of the Gauss-Lobatto quadrature formula as support points by default,
rather than the previous equidistant ones. For cubic polynomials and higher, the point
distribution has thus changed and, consequently, the entries in solution vectors will be
different compared to previous versions of deal.II. Note, however, that using the Gauss-
Lobatto points as nodal points results in a much more stable interpolation, including better
iteration counts in most iterative solvers.

– The library no longer instantiates template classes with long double. These were rarely
used, but took up a significant fraction of compile and link time, as well as library size.
Application programs can, however, still instantiate all template classes with long double
as long as they include the corresponding .templates.h header files.

– The ParameterGUI has been moved to a separate repository.

https://www.dealii.org/developer/doxygen/deal.II/changes_between_8_4_and_8_5.html


7

3 How to cite deal.II

In order to justify the work the developers of deal.II put into this software, we ask that papers
using the library reference one of the deal.II papers. This helps us justify the effort we put into
it.

There are various ways to reference deal.II. To acknowledge the use of the current version of the
library, please reference the present document. For up to date information and bibtex snippets
for this document see:

https://www.dealii.org/publications.html

The original deal.II paper containing an overview of its architecture is [9]. If you rely on specific
features of the library, please consider citing any of the following:

– For geometric multigrid: [26, 25];

– For distributed parallel computing: [7];

– For hp adaptivity: [15];

– For PUM and enrichment of the FE space: [18];

– For matrix-free and fast assembly techniques: [28];

– For computations on lower-dimensional manifolds: [19];

– For integration with CAD files and tools: [21];

– For LinearOperator and PackagedOperation facilities: [30, 31].

– For uses of the WorkStream interface: [38].

deal.II can interface with many other libraries:

– ARPACK [29]

– BLAS, LAPACK

– GSL [20]

– HDF5 [37]

– METIS [27]

– MUMPS [2, 3, 4, 32]

– muparser [33]

– NetCDF [36]

– OpenCASCADE [34]

– p4est [16]

– PETSc [5, 6]

– SLEPc [22]

– Threading Building Blocks [35]

– Trilinos [23, 24]

– UMFPACK [17]

Please consider citing the appropriate references if you use interfaces to these libraries.

Older releases of deal.II can be cited as [11, 12, 13, 10, 8].

https://www.dealii.org/publications.html


8

4 Acknowledgments

deal.II is a world-wide project with dozens of contributors around the globe. Other than the
authors of this paper, the following people contributed code to this release:

Rajat Arora, Mauro Bardelloni, Conrad Clevenger, Sam Cox, Toby D. Young, Juliane Dannberg,
Nicola Demo, Patrick Esser, Niklas Fehn, Rene Gassmoeller, Joscha Gedicke, Nicola Giuliani, Se-
bastian Gonzalez-Pintor, Ryan Grove, Michael Harmon, Daniel Jodlbauer, Guido Kanschat, Justin
Kauffman, Eldar Khattatov , Uwe Koecher, Alex Kokomov, Paul Kuberry, Dustin Kumor, Kon-
stantin Ladutenko, Karl Ljungkvist, Andrew McBride, Mathias Mentler, Andrea Mola, Dragan
Nikolic, Vaibhav Palkar, Spencer Patty, Jonathan Perry-Houts, Giuseppe Pitton, Ce Qin, Jonathan
Robey, Mayank Sabharwal, Ali Samii, Alberto Sartori, Daniel Shapero, Martin Steigemann, Jihuan
Tian, Jaeryun Yim, Liang Zhao

Their contributions are much appreciated!

deal.II and its developers are financially supported through a variety of funding sources:

D. Arndt was supported by the German Research Foundation (DFG) under the project “High-
order discontinuous Galerkin for the exa-scale” (ExaDG) within the priority program “Software
for Exascale Computing” (SPPEXA).

W. Bangerth was partially supported by the National Science Foundation under award OCI-
1148116 as part of the Software Infrastructure for Sustained Innovation (SI2) program; and by
the Computational Infrastructure in Geodynamics initiative (CIG), through the National Science
Foundation under Awards No. EAR-0949446 and EAR-1550901 and The University of California
– Davis.

D. Davydov was supported by the European Research Council (ERC) through the Advanced Grant
289049 MOCOPOLY and the Competence Network for Technical and Scientific High Performance
Computing in Bavaria (KONWIHR).

T. Heister was partially supported by the Computational Infrastructure in Geodynamics initia-
tive (CIG), through the National Science Foundation under Award No. EAR-0949446 and The
University of California – Davis, and National Science Foundation grant DMS1522191.

M. Kronbichler was partially supported by the German Research Foundation (DFG) under the
project “High-order discontinuous Galerkin for the exa-scale” (ExaDG) within the priority pro-
gram “Software for Exascale Computing” (SPPEXA), grant agreement no. KR4661/2-1, the Bay-
erisches Kompetenznetzwerk für Technisch-Wissenschaftliches Hoch- und Höchstleistungsrech-
nen (KONWIHR), and the Gauss Centre for Supercomputing e.V. by providing computing time
on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ) through project
id pr83te.

J-P. Pelteret was supported by the European Research Council (ERC) through the Advanced Grant
289049 MOCOPOLY.

B. Turcksin: This material is based upon work supported by the U.S. Department of Energy, Office
of Science, under contract number DE-AC05-00OR22725.

D. Wells was supported by the National Science Foundation (NSF) through Grant DMS-1344962.

The Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg University has pro-
vided hosting services for the deal.IIweb page and the SVN archive.



9

References
[1] List of changes. https://www.dealii.org/developer/doxygen/deal.II/changes_
between_8_4_and_8_5.html.

[2] P. Amestoy, I. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric and
unsymmetric solvers. Comput. Methods in Appl. Mech. Eng., 184:501–520, 2000.

[3] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applica-
tions, 23(1):15–41, 2001.

[4] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for the
parallel solution of linear systems. Parallel Computing, 32(2):136–156, 2006.

[5] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D.
Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang. PETSc
users manual. Technical Report ANL-95/11 - Revision 3.5, Argonne National Laboratory,
2014.

[6] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D.
Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang. PETSc
Web page. http://www.mcs.anl.gov/petsc, 2014.

[7] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and data structures for
massively parallel generic adaptive finite element codes. ACM Trans. Math. Softw., 38:14/1–28,
2011.

[8] W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier,
B. Turcksin, and D. Wells. The deal.II library, version 8.4. Journal of Numerical Mathematics,
24(3):135–141, 2016.

[9] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II — a general purpose object oriented
finite element library. ACM Trans. Math. Softw., 33(4), 2007.

[10] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, and B. Turcksin.
The deal.II library, version 8.3. Archive of Numerical Software, 4(100):1–11, 2016.

[11] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and
T. D. Young. The deal.II library, version 8.0. arXiv preprint http://arxiv.org/abs/1312.
2266v3, 2013.

[12] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and
T. D. Young. The deal.II library, version 8.1. arXiv preprint http://arxiv.org/abs/1312.
2266v4, 2013.

[13] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and
T. D. Young. The deal.II library, version 8.2. Archive of Numerical Software, 3, 2015.

[14] W. Bangerth and G. Kanschat. Concepts for object-oriented finite element software – the
deal.II library. Preprint 1999-43, SFB 359, Heidelberg, 1999.

[15] W. Bangerth and O. Kayser-Herold. Data structures and requirements for hp finite element
software. ACM Trans. Math. Softw., 36(1):4/1–4/31, 2009.

[16] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive
mesh refinement on forests of octrees. SIAM J. Sci. Comput., 33(3):1103–1133, 2011.

[17] T. A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method.
ACM Trans. Math. Softw., 30:196–199, 2004.

https://www.dealii.org/developer/doxygen/deal.II/changes_between_8_4_and_8_5.html
https://www.dealii.org/developer/doxygen/deal.II/changes_between_8_4_and_8_5.html
http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/1312.2266v3
http://arxiv.org/abs/1312.2266v3
http://arxiv.org/abs/1312.2266v4
http://arxiv.org/abs/1312.2266v4


10

[18] D. Davydov, T. Gerasimov, J.-P. Pelteret, and P. Steinmann. On the h-adaptive PUM and
hp-adaptive FEM approaches applied to PDEs in quantum mechanics. arXiv:1612.02305
[physics.comp-ph], 2016.

[19] A. DeSimone, L. Heltai, and C. Manigrasso. Tools for the solution of PDEs defined on curved
manifolds with deal.II. Technical Report 42/2009/M, SISSA, 2009.

[20] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, and
R. Ulerich. Gnu scientific library reference manual (edition 2.3), 2016.

[21] L. Heltai and A. Mola. Towards the Integration of CAD and FEM using open source libraries:
a Collection of deal.II Manifold Wrappers for the OpenCASCADE Library. Technical report,
SISSA, 2015. Submitted.

[22] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the
solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351–362, 2005.

[23] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,
K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro,
J. M. Willenbring, A. Williams, and K. S. Stanley. An overview of the Trilinos project. ACM
Trans. Math. Softw., 31:397–423, 2005.

[24] M. A. Heroux et al. Trilinos web page, 2014. http://trilinos.sandia.gov.

[25] B. Janssen and G. Kanschat. Adaptive multilevel methods with local smoothing for H1- and
Hcurl-conforming high order finite element methods. SIAM J. Sci. Comput., 33(4):2095–2114,
2011.

[26] G. Kanschat. Multi-level methods for discontinuous Galerkin FEM on locally refined meshes.
Comput. & Struct., 82(28):2437–2445, 2004.

[27] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[28] M. Kronbichler and K. Kormann. A generic interface for parallel cell-based finite element
operator application. Comput. Fluids, 63:135–147, 2012.

[29] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK users’ guide: solution of large-scale
eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia, 1998.

[30] M. Maier, M. Bardelloni, and L. Heltai. LinearOperator – a generic, high-level expression
syntax for linear algebra. Computers and Mathematics with Applications, 2016. To appear.

[31] M. Maier, M. Bardelloni, and L. Heltai. LinearOperator Benchmarks, Version 1.0.0, Mar.
2016.

[32] MUMPS: a MUltifrontal Massively Parallel sparse direct Solver. http://graal.ens-lyon.
fr/MUMPS/.

[33] muparser: Fast Math Parser Library. http://muparser.beltoforion.de/.

[34] OpenCASCADE: Open CASCADE Technology, 3D modeling & numerical simulation. http:
//www.opencascade.org/.

[35] J. Reinders. Intel Threading Building Blocks. O’Reilly, 2007.

[36] R. Rew and G. Davis. NetCDF: an interface for scientific data access. Computer Graphics and
Applications, IEEE, 10(4):76–82, 1990.

[37] The HDF Group. Hierarchical Data Format, version 5, 1997-NNNN. http://www.hdfgroup.
org/HDF5/.

http://trilinos.sandia.gov
http://graal.ens-lyon.fr/MUMPS/
http://graal.ens-lyon.fr/MUMPS/
http://muparser.beltoforion.de/
http://www.opencascade.org/
http://www.opencascade.org/
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/


11

[38] B. Turcksin, M. Kronbichler, and W. Bangerth. WorkStream – a design pattern for multicore-
enabled finite element computations. ACM Transactions on Mathematical Software, 43(1):2/1–
2/29, 2016.


	Overview
	Significant changes to the library
	The CellDataStorage class and friends
	The MappingManifold class
	Extension of the LinearOperator class
	The physics module
	Scalability of geometric multigrid framework
	Matrix-free operators
	The FE_Enriched class
	The FESeries namespace
	New and updated tutorial programs
	Incompatible changes

	How to cite deal.II
	Acknowledgments

