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Definition. We define the harmonic series, Hn, as

Hn =

n∑
k=1

1

k
.

Lemma. We have the following approximation:

Hn − 1 ≤ log(n) ≤ Hn.

Proof. For reference, consider the following depiction of the function, f(x) =
1

x
,

over the interval [0,7] :

Figure 1: Right-hand Riemann approximation
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Observe that Hn is given by the right-hand Riemann approximation of∫ n

0

dx

x
. In particular, subtracting off the area of the left-most rectangle, we

have

Hn − 1 ≤
∫ n

1

dx

x

= log(n)− log(1)

= log(n).

For the other bound, consider the similar figure:

Figure 2: Left-hand Riemann approximation

In this case, Hn is given by the left-hand Riemann approximation of

∫ n+1

1

dx

x
.

So we have

Hn ≥
∫ n+1

1

dx

x

= log(n+ 1)− log(1)

= log(n+ 1)

> log(n).

In this way, we conclude

Hn − 1 ≤ log(n) ≤ Hn.
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Of interest then, is to get our hands on this error term. To do so, we first
recall a bit of notation.

Definition. Given two functions, f(x) and g(x), if there is a constant c ∈ R so
that for some bound B, and for all x ≥ B, we have that |f(x)| ≤ c · g(x), then
we write

f(x) = O(g(x)).

This is called Big O notation. We may also equivalently write f(x)� g(x).

Theorem. There is constant γ ∈ R, which is known as Euler’s constant, so
that

Hn = log(n) + γ +O

(
1

n

)
.

Proof. Set En = Hn− log(n+1), and refer to Figure 2. Geometrically speaking,
En is the sum of the areas of the first n “triangular” regions above 1/x. First,
note that as a sequence, En is strictly increasing, seeing as going further in the
sequence results in gaining more area. Furthermore, for any n, we have En ≤ 1
(one can imagine sliding each triangle left into the unit square formed by the
axes). In this way, En is monotonic and bounded, so it has a limit. Set

γ = lim
n→∞

En.

Consider the quantity γ − En. We know that γ is the sum of the areas of all
triangles, and En is the sum of the area of the first n triangles. Thus, γ − En
is the tail after the first n triangles. Using the same sliding argument as above,
notice that

γ − En <
1

n+ 1
<

1

n
.

So we have

Hn = log(n+ 1) + En

= log(n+ 1) + γ + En − γ

= log(n) +O

(
1

n

)
+ γ + (En − γ)

= log(n) + γ +O

(
1

n

)
.

The penultimate step will be shown with rigor in a later exercise, but arises
from the fact that log(n+ 1) ∼ log(n).

Definition. We say that two functions f, g are asymptotic and write f ∼ g if

lim
x→∞

f(x)

g(x)
= 1.
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Example. As we will see, the Prime Number Theorem states that

#{p < x | p is prime} ∼ x

log(x)
.

Example. We have
x2 + x ∼ x2.

Remark. The last example makes clear that ∼ speaks only of relative error and
nothing of absolute error.

Corollary. We have the following immediate result:

Hn ∼ log(n) + γ.

Proof. Take n→∞ in the previous theorem, and the error term drops out.

Additive and Multiplicative Functions

11 January 2013

Notation: Little “o”

We say f(x) = o(g(x)) if lim
x→∞

f(x)

g(x)
= 0.

Exercises:

• Suppose c ∈ R show log(n+ c) ∼ log(n).

Pf: We evaluate the end behavior using l’Höpital’s rule:

lim
n→∞

log(n+ c)

log(n)
= lim
n→∞

1
n+c

1
n

= lim
n→∞

n

n+ c
= 1.

• log(x) = o(xε) ∀ε > 0

Pf: Let ε > 0.
We use l’Höpital’s rule to evaluate the following:

lim
x→∞

log x

xε
= lim
x→∞

1

εxε
= 0

Hence log(x) = o(xε).

Arithmetic Functions

Definition.
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• A function f : N→ C is said to be arithmetic.

• An arithmetic function f is additive if f(mn) = f(m)+f(n) for (m,n) = 1.
If this holds for all m,n ∈ N then f is completely additive.

• An arithmetic is multiplicative if f(mn) = f(m)ḟ(n) for (m,n) = 1. If
this holds for all m,n ∈ N, then f is completely multiplicative.

Example.

• ν(n) = the number of distinct prime factors of n is an additive function.
i.e. ν(12) = 2.

• Ω(n) = the number of prime divisors of n counted with multiplicity is a
completely additive function. (Ω(12) = 3 because 12 = 2 · 2 · 3).

Complex Analysis Notes

Recall: eiθ = cos θ + i sin θ.
So if s = a+ bi and z ∈ R+ then

zs = za+bi = za(zb)i = zaeib log z = za(cos(b log z) + i sin(b log z).

Definition.
σs(n) =

∑
d|n

ds is multiplicative but not completely multiplicative.

Proof. First the counterexample: σs(4) = 1s+2s+4x 6= (1s+2s)2 = σs(2)σs(2).
Now suppose (m,n) = 1. Then

σs(mn) =
∑
d|mn

ds =
∑
d1|m

∑
d2|n

(d1d2)s

Exercise: Justify this, i.e {d | mn} ↔ {(d1, d2) | d1 | m, d2 | n}.

Proof. Since (m,n) = 1, each d uniquely determines prime factors that comprise
d1, d2 so that d = d1d2 and d1 | m while d2 | n. Thus, we have∑

d|mn

ds =
∑

d1d2|mn

(d1d2)s =
∑
d1|m

∑
d2|n

(d1d2)s.

5



σs(mn) =

∑
d1|m

ds1

∑
d2|n

ds2

 = σs(m)σs(n)

Note: If n = pa11 ...pakk then apply the definition of multiplicative function
and induction we get

σs(n) =

k∏
i=1

σs(p
ai
i ) =

k∏
i=1

(1s + pi
s + pi

2s + ...+ pi
sai)

=

k∏
i=1

 ai∑
j=0

(psi )
j


=

k∏
i=1

(psi )
ai+1 − 1

psi − 1
(provided s 6= 0).

If s = 0, then σ0(n) =

k∏
i=1

σ0(paii ) =

k∏
i=1

(ai + 1).

Definition.

• µ(n) =

{
(−1)ν(n) if n is square free
0 otherwise

• φ(n) = #{1 ≤ m ≤ n | (m,n) = 1} = n
∏
p|n

(
1− 1

p

)
.

• Von Mangoldt function

Λ(n) =

{
log(p) if n = pα for some α ≥ 1
0 otherwise

e.g Λ(12) = 0.
Λ(8) = log(2)

Λ(9) = log(3)

Λ(72) = 0
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Lemma. ∑
d|n

µ(d) =

{
1 if n = 1
0 otherwise

Proof.
Suppose u = pa11 ...pakk > 1 Then

∑
d|n

µ(d) =

a1∑
i1=0

a2∑
i2=0

...

ak∑
ik=0

µ(pi11 ...p
ik
k ) =

1∑
i1=0

1∑
i2=0

...

1∑
ik=0

µ(pi11 ...p
ik
k )

=

k∏
j=1

(µ(1) + µ(pj))

=

k∏
j=1

(1− 1)

= 0.

If n = 1, then
∑
d|1

µ(d) = µ(1) = 1

Theorem. (Möbius Inversion)

f(n) =
∑
d|n

g(d)⇔ g(n) =
∑
d|n

µ(d)f
(n
d

)

Proof.

(⇒): Suppose f(n) =
∑
d|n

g(d).

Then,

∑
d|n

µ(d)f
(n
d

)
=
∑
d|n

µ(d)
∑
e|nd

g(e)
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=
∑
n=deh

µ(d)g(e) =
∑
e|n

g(e)

∑
d|ne

µ(d)

 = g(n)

(⇐): Suppose g(n) =
∑
d|n

µ(d)f
(n
d

)
Then

∑
d|n

g(d) =
∑
d|n

∑
e|d

µ(e)f

(
d

e

)
=
∑
ehk=n

µ(e)f(h)

=
∑
h|n

f(h)
∑
j|nn

(µ(j))

= f(n)

Remark. The following are just rearrangements:∑
d|n

µ(d)f
(n
d

)
=
∑
d|n

µ
(n
d

)
f(d) =

∑
n=ed

µ(e)f(d).
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Möbius Inversion

14 January 2013

Exercise:
∑
d|n

φ(d) = n

Proof. Recall from group theory the group Zn. A preliminary result is that if
some d | n, then there are exactly φ(d) elements with order d in Zn. Since the
order of an element must divide the order of a group, summing φ(d) over all
divisors d of n counts the elements in Zn, of which there are n of them.

Lemma.

φ(n)

n
=
∑
d|n

µ(d)

d

Proof. Equivalently, we will show φ(n) =
∑
d|n

µ(d)
(n
d

)
.

Take f(m) = m and g(m) = φ(m).

Then, using the previous fact, we have n = f(n) =
∑
d|n

g(d).

Now, using Möbius Inversion, we have:

φ(m) = g(m)

=
∑
d|m

µ(d)f
(m
d

)
=
∑
d|m

µ(d)
(m
d

)
.

Remark. Suppose n = pa11 · · · p
ak
k and let f be multiplicative.

1. f(n) =

k∏
i=1

f(paii ).

2. g(n) =
∑
d|n

f(d) =

a1∑
i1=0

a2∑
i2=0

...

ak∑
ik=0

f(pi11 ) · · · f(pikk ).

We do this because the divisors look like paii . Then, rearrange the terms

to get a k-fold product of the sums so that g(n) =

k∏
l=1

(
al∑
il=0

f(pill )

)
.
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3. If f is multiplicative, g(n) =
∑
d|n

f(d) is multiplicative.

Let m = qb11 . . . qbll , and suppose (m,n) = 1. Then

g(nm) =
∑
d|nm

f(d)

=

a1∑
i1=0

. . .

ak∑
ik=0

b1∑
j1=0

. . .

bl∑
jl=0

f(pi11 ) . . . f(pjkk )f(qb11 ) . . . f(qjll )

=

k∏
i=1

(
ai∑
t=0

f(ptii )

)
·

l∏
j=1

 bj∑
s=0

f(q
sj
j )


= g(n)g(m).

This means that in Möbius Inversion, either both f and g are multiplica-
tive, or neither are.

Exercise:
Recall:

Λ(m) =

{
log(p) if m = pα

0 otherwise

1. Show that
∑
d|n

Λ(d) = log(n).

Proof. Let n = pa11 . . . pakk . Observe that

∑
d|n

Λ(d) =

a1∑
i1=0

. . .

ak∑
ik=0

Λ(pi11 . . . pikk )

=

[
a1∑
i1=0

Λ(pi11 )

]
. . .

[
ak∑
ik=0

Λ(pikk )

]

=

a1∑
i1=1

log(p1) . . .

ak∑
ik=1

log(pk)

= a1log(p1) . . . aklog(pk)

= log(n).

The second step is the key, and though it looks like it relies on the property
of multiplicity (with Λ(n) doesn’t have), I believe it holds because for
distinct primes p, q, we have Λ(pq) = 0, which kills many of those sums.
Thoughts?
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2. Using Möbius Inversion, deduce that Λ(n) = −
∑
d|n

µ(d) log(d).

Proof. Set f(m) = log(m) and g(m) = Λ(m). Then using the previous
exercise and Möbius Inversion, we have

g(n) = Λ(n) =
∑
d|n

µ(d)log
(n
d

)
=
∑
d|n

µ(d)log(n)−
∑
d|n

µ(d)log(d)

= log(n)
∑
d|n

µ(d)−
∑
d|n

µ(d)log(d)

= 0−
∑
d|n

µ(d)log(d)

= −
∑
d|n

µ(d)log(d).

Exercise:
Show that for positive x,

G(x) =
∑
n≤x

F
(x
n

)
⇐⇒ F (x) =

∑
n≤x

µ(n) G
(x
n

)
.

Fact.

1. Suppose

∞∑
k=1

d3(k)|f(kx)| <∞ and g(x) =

∞∑
m=1

f(mx).

Then, f(x) =

∞∑
n=1

µ(n)g(nx).

2. Suppose

∞∑
k=1

d3(k)|g(kx)| <∞ and f(x) =

∞∑
n=1

µ(n)g(nx).

Then, g(x) =

∞∑
m=1

f(mx).
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Proof. ⇒ Suppose g(x) =

∞∑
m=1

f(mx). Then,

∞∑
n=1

µ(n)g(nx) =

∞∑
n=1

µ(n)

∞∑
m=1

f(mnx)

=

∞∑
n=1

∞∑
m=1

µ(n)f(mnx).

Let mn = r so that n | r. Then, rearrange* to get

∞∑
r=1

f(rx)
∑
n|r

µ(n).

Recall: ∑
n|r

µ(n) =

{
1 r = 1
0 otherwise

All that remains is when r = 1 so that

∞∑
r=1

f(rx)
∑
n|r

µ(n) = f(x).

*Rearrangement is justified because absolute convergence of the sum:
We have

∞∑
n=1

∞∑
m=1

|f(mnx)| ≤
∞∑
n=1

∞∑
m=1

|µ(n)f(mnx)|

so we can see:

∞∑
r≤1

|f(rx)|d(r) ≤
∞∑
r=1

d3(r)|f(rx)| <∞ by assumption.

Exercise 1.11 Liouville’s Function λ(n) = (−1)Ω(n). Show that∑
d|n

λ(d) =

{
1 if n is a square
0 otherwise

Proof. Let n = pa11 . . . pakk . Then we have∑
d|n

λ(d) =

a1∑
i1=0

. . .

ak∑
ik=0

λ(pi11 . . . pikk )

=

a1∑
i1=0

. . .

ak∑
ik=0

(−1)
∑k
j=1 ij

=

k∏
j=1

 aj∑
ij=0

(−1)ij

 .

Notice that the inside sum is 1 when aj is even. So for the entire product to
be 1, we require each of a1, . . . , ak to be even – which is equivalent to requiring
that n be a square. The product vanishes otherwise.
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Exercise 1.12 Ramanujan Sums

Define Cn(m) =
∑

1≤h≤n
(h,n)=1

e

(
hm

n

)
and e(t) = e2πit.

We want to find a better way to express this.
Put

g(m) =
∑

1≤h≤n

e

(
hm

n

)

= e
(m
n

)(e (mn )n − 1

e
(
m
n

)
− 1

)
= 0

If n 6 | m, this is our result.

If n | m, then we get
∑

1≤h≤n

1 because we are considering eπi raised to an integer

which is 1 so we are consdering
∑

1≤h≤n

1 = n. This gives us a nicer formula so

that

gm(n) =

{
n if n | m
0 otherwise

Note: gm(n) =
∑
d|n

∑
1≤h≤n
(h,n)=d

e

(
hm

n

)
so let h′d = h and n′d = n so we are now

considering
∑
d|n

∑
1≤h′≤n′
(h′,n′)=1

e

(
h′dm

dn′

)
=
∑
d|n

Cn′(m).

So, we have gm(n) =
∑
d|n

Cn
d

(m) where
n

d
is the variable.

Using Möbius Inversion, we can get our hands on the right hand side so that

Cn(m) =
∑
d|n

µ(d)gm

(n
d

)
=
∑
d|n

µ
(n
d

)
gm(d)

=
∑

d|(m,n)

µ
(n
d

)
(d).

Note: Everything is killed but d | m because if d 6 | m, gm(d) = 0.
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Formal Dirichlet Series

01/16/2013

Ramanujan Sums Continued
Recall

Cn(m) =
∑

1≤h≤n
(h,n)=1

e

(
hm

n

)
=

∑
d|(n,m)

µ
(n
d

)
d

For p prime we have

Cp(m) =
∑

d|(p,m)

µ
(p
d

)
=

{
−1 p 6 |m
p− 1 p|m

and

Cn(1) =
∑

1≤h≤n
(h,n)=1

e

(
h

n

)
= µ(n)

Exercise 1.14: Let δ = (n,m). Show

Cn(m) =
µ
(
n
δ

)
ϕ(n)

ϕ
(
n
δ

)
Dirichlet Series

Definition. If f is an arithmetic function, then its formal Dirichlet series is

D(f, s) =

∞∑
n=1

f(n)n−s =

∞∑
n=1

f(n)

ns

Fact.

1. D(f, s) +D(g, s) = D(f + g, s)

2. D(f, s)D(g, s) = D(f ∗ g, s)

where f ∗ g(n) =
∑
de=n

f(d)g(e) is called the convolution of f and g.

Definition.

δ(n) =

{
1 if n = 1
0 otherwise

Note that f ∗ δ = f . So δ is an identity for the operation of convolution.
Exercise

1. If f and g are multiplicative, is f ∗ g multiplicative?
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Proof. Suppose (m,n) = 1. In an exercise from the second lecture, recall
that given relatively prime m,n, we discussed the one-to-one correspon-
dence between divisors of mn and ordered pairs of divisors (d1, d2), where
d1 | m and d2 | n. This same idea justifies the key summation manipula-
tion below:

(f ? g)(m) · (f ? g)(n) =
∑
ed=m

f(e)g(d) ·
∑
bc=n

f(c)g(b)

=
∑
ed=m
bc=n

f(e)g(d)f(c)g(b)

=
∑
ed=m
bc=n

f(ec)g(db)

=
∑
st=mn

f(s)g(t)

= (f ? g)(mn).

2. Is ∗ associative?

3. Are multiplicative functions invertible under ∗ (i.e. can we solve f ∗ g = δ
for g given f)?

Fact
If f is multiplicative, then

D(f, s) =

∞∑
n=1

f(n)

ns
=

∏
p, p prime

( ∞∑
k=0

f(pk)

pks

)
=

∏
p, p prime

(1+f(p)p−s+f(p2)p−2s+...)

Definition.

D(1, s) =
∑
n≥1

1

ns
= ζ(s)

Note that

ζ(s) =
∑
n≥1

1

ns
=

∏
p, p prime

( ∞∑
k=0

1

pks

)
=

∏
p, p prime

(
1

1− 1
ps

)
=

∏
p, p prime

(1−p−s)−1

where the third equality comes from the fact that the inner sum is a geometric
series in ps.
Fact

D(µ, s) =
1

ζ(s)
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Proof.

D(µ, s) =
∏

p, p prime

( ∞∑
k=0

µ(pk)

pks

)
=

∏
p, p prime

(1− p−s) =
1

ζ(s)

Now note that

lim
s→1+

ζ(s) = lim
x→∞

∑
n≤x

1

n
≥ lim
x→∞

log(x) =∞.

This implies that
∏
p

(
1

1− 1
ps

)
→∞ as s→ 1+. If we let s = 1 we get

1

1− 1
ps

=
1

1− 1
p

=
p

p− 1
.

But we saw above that if we take the product of
p

p− 1
over all primes it will go

to infinity. That can only happen if we have an infinite number of terms in the
product. Therefore there are infinitely many primes.
Fact 1.2.3:

D(Λ, s) =
∑
n≥1

Λ(n)

ns
=
−ζ ′(s)
ζ(s)

=
∑
pk≥1
p, prime

log(p)

pks

Proof. Differentiating ζ(s) yields

ζ ′(s) = −
∑
n≥1

log(n)

ns
.

Thus −ζ ′(s) = D(log, s). Also, as we saw before
1

ζ(s)
= D(µ, s). So

−ζ ′(s)
ζ(s)

= D(log, s)D(µ, s) = D(log ∗µ, s) = D(Λ, s)

Exercise Prove the above blue equality.

Proof. In an earlier exercise, we showed that

Λ(n) =
∑
d|n

µ(d) log
(n
d

)
,

which is precisely our definition of convolution.
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Orders of Some Arithmetic Functions

18 January 2013

Fact Suppose f(n) =
∑
d|n

g(n) = g ? 1. Then we have

D(f, s) = D(g ? 1, s) = D(g, s)D(1, s) = D(g, s)ζ(s).

Exercise Show that for λ(n) = (−1)Ω(n), we have

D(λ, s) =
ζ(2s)

ζ(s)
.

Proof. Keeping in mind that Liouville’s function is multiplicative, we compute

D(λ, s) =
∑
n≥1

λ(n)

ns

=
∏
p

( ∞∑
k=0

λ(pk)

pks

)

=
∏
p

( ∞∑
k=0

(
−1

ps

)k)

=
∏
p

(
1

1 + p−s

)

=
∏
p

(
1 + p−s

1− p−2s

)
=
ζ(2s)

ζ(s)
.

Exercise We have the following identity:

D(2ν , s) =
∑
n≥1

2ν(n)

ns
=
ζ2(s)

ζ(2s)
.

Proof. First, note that since ν(n) is additive, the function 2ν(n) is multiplicative.
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We have ∑
n≥1

2ν(n)

ns
=
∏
p

( ∞∑
k=0

2ν(pk)

pks

)

=
∏
p

(
1 +

∞∑
k=1

2

(
1

ps

)k)

=
∏
p

(
1 +

2p−s

1− p−s

)

=
∏
p

(
1 + p−s

1− p−s

)

=
∏
p

(
1− p−2s

(1− p−s)2

)

=
ζ2(s)

ζ(2s)
.

Fact The following computation gives the Dirichlet series for |µ(n)|. Observe
that

D(|µ|, s) =
∑
n≥1

|µ(n)|
ns

=
∏
p

∞∑
k=0

|µ(pk)|
pks

=
∏
p

(
1 +

1

ps

)

=
∏
p

(
1− 1

p2s

1− 1
ps

)

=
ζ(s)

ζ(2s)
.

Ramanujan’s Identity

∞∑
n=0

αn+1 − βn+1

α− β
γn+1 − δn+1

γ − δ
Tn =

1− αβγδT 2

(1− αγT )(1− αδT )(1− βγT )(1− βδT )

Fact 1.2.8

∞∑
n=1

d2(n)

ns
=
ζ4(s)

ζ(2s)

18



Proof. Write

αn+1 − βn+1

α− β
= αn + αn−1β + ...+ αβn−1 + βn.

Take α = β = γ = δ = 1 in Ramanujan’s identity to get

∞∑
n=0

(n+ 1)2Tn =
1− T 2

(1− T )4
.

Then

∞∑
n=1

d2(n)

ns
=
∏
p

∞∑
k=0

d2(pk)

pks
=
∏
p

∞∑
k=0

(k + 1)2

pks
.

Taking T =
1

ps
yields

∏
p

1− 1
p2s

(1− 1
ps )4

=
ζ4(s)

ζ(2s)
.

Exercise 1.2.9
Using Ramanujan’s identity, show for a, b ∈ C that

∞∑
n=1

σa(n)σb(n)
1

ns
=
ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)

ζ(2s− a− b)
.

Proof. If we write the right-hand side as an Euler product, then the factor for
a fixed prime p is given by

1− p−2spapb

(1− p−s)(1− p−spa)(1− p−spb)(1− p−spapb)
.

Now applying Ramanujan’s identity with α = 1, β = pb, γ = 1, δ = pa, and
T = p−s reduces this to

∞∑
m=0

1− pa(m+1)

1− pa
1− pb(m+1)

1− pb
p−ms =

∞∑
m=0

(1+pa+p2a+...+pam)(1+pb+p2b+...+pbm)p−ms.

If we set

Ap,m = (1 + pa + p2a + ...+ pam)(1 + pb + p2b + ...+ pbm)p−ms,

then

19



ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)
ζ(2s− a− b)

=
∏
p

∞∑
m=0

Ap,m =

∞∑
n=0

∏
pm||n

Ap,m =

∞∑
n=1

(
∏
pm||n

(1+pa+p2a+...+pam))(
∏
pm||n

(1+pb+p2b+...+pbm))
∏
pm||n

p−ms =

∞∑
n=1

σa(n)σb(n)
1

ns
.

Exercise
Let

qk(n) =

{
1 n = kth power

0 otherwise
.

Then D(qk, s) =
ζ(s)

ζ(ks)
.

Proof. It’s important to note that qk(n) is multiplicative. So we have

∞∑
n=1

qk(n)n−s =
∏
p

(1 + p−s + p−2s + ...p−(k−1)s) =
∏
p

1− p−ks

1− p−s
=

ζ(s)

ζ(ks)
.

Fact 1.3.1

d(n) =
∑
d|n

1 =
∑

d|n,d≤
√
n

1 ≤ 2
√
n

Fact 1.3.2 For every ε > 0, there exists a constant c(ε) ∈ R such that d(n) ≤
c(ε)nε.

Proof.
d(n)

nε
=
∏
pα|n

d(pα)

pαε
=
∏
pα|n

α+ 1

pαε

If p > 2
1
ε , then pε > 2 so pαε > 2α. Therefore

1

pαε
<

1

2α
so
α+ 1

pαε
<
α+ 1

2α
≤

1 and then
∏
p>2

1
ε

α+ 1

pαε
< 1. For p ≤ 2

1
ε ,

α+ 1

pαε
=

α

pαε
+

1

pαε
≤ 1 +

α

pαε
≤ 1 +

α

2αε
= 1 +

α

elog(2)αε
.
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Now for any y ∈ R, one has ey > y since ey = 1 + y+ higher order terms.
Hence

1 +
α

elog(2)αε
≤ 1 +

α

log(2)αε
= 1 +

1

ε log(2)
.

Thus

∏
pα||n,p≤2

1
ε

α+ 1

pαε
<

∏
pα||n,p≤2

1
ε

(1+
1

ε log(2)
) <

∏
p≤2

1
ε

(1+
1

ε log(2)
) = (1+

1

ε log(2)
)π(2

1
ε ).

Now take

c(ε) =
∏
p≤2

1
ε

(1 +
1

ε log(2)
).

Then

d(n)

nε
=
∏
pα||n

α+ 1

pαε
< c(ε)

∏
pα||n,p>2

1
ε

α+ 1

pαε
< c(ε).

Exercise 1.3.3
For any n > 0, show that

d(n) < 2
(1+ε) log(n)
log(log(n)) .

Hint: Take

ε =
(1 + n

2 ) log(2)

log(log(n))
.

Note: We showed

d(n) < c(ε)nε = 2
log(c(ε))
log(2)

+
2 log(n)
log(2) .

Further Bounds on Arithmetic Functions

23 January 2013

We continue with our work in bounding specific arithmetic functions.

Fact. We have the following bound on σ1(n):

σ1(n) ≤ n(log(n) + 1).
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Proof. Observe that

σ1(n) =
∑
d|n

d

=
∑
d|n

n

d

= n
∑
d|n

1

d

≤ n
n∑
d=1

1

d

≤ n
(
log(n) + γ +O

(
1

n

))
,

where this bound on the harmonic series comes from the first lecture. Recall
that the coefficient on the error term is a 1, and so using the Euler constant
approximation γ ≈ 0.5772..., we may conclude that for n ≥ 3

σ1(n) ≤ n(log(n) + 1).

The cases for n = 1 and n = 2 are easily verified.

Remark. A very simple lower bound is σ1(n) = n
∑
d|n

1

d
≥ n. Therefore,

n ≤ σ1(n) ≤ n(log(n) + 1).

Switching our emphasis to φ(n), we have the immediate upper bound φ(n) ≤
n, where equality is reached only on φ(1) = 1. In regards to how small φ(n)
gets, we present no concrete result. Observe, however, that

φ(n) = n
∏
p|n

(
1− 1

p

)
= n

∏
p|n

(
p− 1

p

)
,

and so φ(n) is small when many distinct primes divide n.

We do have a nice relationship between σ1(n) and φ(n):

Fact. There are constants c1, c2 ∈ R so that

c1n
2 ≤ φ(n)σ1(n) ≤ c2n2.

Proof. We begin by expressing these arithmetic functions in a more accessible
form. We know that

σ1(n) =
∏
pα||n

(1 + p+ ...+ pα).
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Therefore, dividing both sides of this identity by n yields

σ1(n)

n
=
∏
pα||n

(
1

pα
+

1

pα−1
+ ...+ 1

)

=
∏
pα||n

(
α∑
k=0

1

pk

)

=
∏
pα||n

(
1

pα+1 − 1
1
p − 1

)

=
∏
pα||n

(
pα+1 − 1

pα(1− p)

)
.

For φ(n), we have

φ(n)

n
=
∏
p|n

(
p− 1

p

)
=
∏
pα||n

(
p− 1

p

)
.

Thus, multiplying these expressions together gives

φ(n)σ1(n)

n2
=
∏
pα||n

(
p− 1

p

)(
pα+1 − 1

pα(1− p)

)

=
∏
pα||n

(
pα+1 − 1

pα+1

)
.

We immediately notice that each factor in this product is less than 1, so the
product as a whole is less than one. Therefore we have

φ(n)σ1(n) ≤ n2.

Hence, in the context of the problem statement, c2 = 1.

For the lower bound, we’ll need to do a bit more work with our product.
First, we’ll rewrite it as

φ(n)σ1(n)

n2
=
∏
pα||n

(
pα+1 − 1

pα+1

)
=
∏
pα||n

(
1− 1

pα+1

)
,
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so that multiplying by n2 yields the following approximation:

φ(n)σ1(n) = n2
∏
pα||n

(
1− 1

pα+1

)

≥
∏
pα||n

(
1− 1

pα+1

)

≥
∏
pα||n

(
1− 1

p2

)

≥
∏
p

(
1− 1

p2

)
=

1

ζ(2)
.

Here, we note that Euler first computed

1

ζ(2)
=
∑
n≥1

1

n2
=

6

π
,

and so we may set this as c2, which completes the proof.

There is a tiny bit of hand-waving going in the final steps of the previous
proof. Without citing Euler, how might we have known that the infinite product
above actually converged?

Definition. Suppose zn is non-zero for all n ∈ N. Set Pk =

k∏
n=1

zn as the kth

partial product of zn. We define the infinite product of zn by

z =

∞∏
n=1

zn = lim
k→∞

(
k∏

n=1

zn

)
.

Notice that for any k, we have

zk =
Pk
Pk−1

.

This means that as k →∞, we require

zk =
z

z
= 1.

In other words, the sequence must tend to 1 in order for the product of the
terms of the sequence to converge.

25 January 2013
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z =
∏
n

zn

pk =

k∏
n=1

zn

pk
pk−1

= zk

Since pk → z, zk → 1 as k →∞. Without loss of generality, Re(zk) > 0.

We will eventually replace zn by 1+zn. Note: If z =
∏
n

(1+zn) then zn → 0

as n→∞.

log(Reiθ) = log(r) + iθ(r > 0,−π < θ < π)

Note: z =
∏
n

(1 + zn) and z /∈ R≤0 ⇔ log(z) =
∑
n

log(1 + zn).

Fact:
∏
n>1

(1+zn) converges to some complex number note in R≤0 iff
∑
n

log(1+

zn) converges in

because log is holomorphic on the cut complex plane.

Recall: log(1 + z) =

∞∑
n=1

(−1)n−1zn

n
= z − z2

2
+
z3

3
− z4

4
+ . . .

has radius of convergence 1. (i.e This representation is valid and converges
for |z| < 1). Without loss of generality we may assume |zn| < 1∀n.

For |z| < 1,

|1− log(1 + z)

z
| = |z

2
− z2

3
+
z4

4
− ...|

=
1

2
|z − 2z2

3
+

2z3

4
− ...|
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≥ 1

2
(|z|+ |z|2 + |z|3 + ...)

=
|z|
2

(
1

1− |z|
)

Taking |zn| <
1

2
,
|z|
2
≤ | log(1 + z)| ≤ 3

2
|z|.

∑
n

|z|
2
≤
∑
n

| log(1 + z)| ≤
∑
n

3

2
|z| (1)

Fact: Suppose Re(zn) > −1. Then
∑
n≥0

log(1 + zn) converges absolutely iff∑
n≥0

zn converges absolutely.

Proof. This is straight forward from the Comparrison Test and from (1).

Corollary. •
∏

(1 + zn) converges ⇔
∑

log(1 + zn) converges

•
∑

log(1 + zn) converges absolutely ⇔
∑
n

zn converges absolutely.

Definition.
∏

(1 + zn) converges absolutely iff
∑
n

zn converges absolutely.

Note:

∞∏
n=1

(1 + zn) converges absolutely, say to z.

⇒ log(z) =
∑
n≥1

log(1 + zn) converges to a complex number.

⇒ log(z) = a+ bi(a ∈ R,−π < ¡
¯
π).

⇒ z 6= 0 since z = ea(cos(b) + i sin(b)) 6= 0.

Exercise: Show ν(n) ≤ log(n)

log(2)
.
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Proof. Factor n = pa11 pa22 · · · p
ak
k . Then we have

ν(n) = ν(pa11 pa22 · · · p
ak
k )

=

k∑
i=1

ai

≤
k∑
i=1

ai
log(pi)

log(2)

=
log(n)

log(2)
.

Remark: Recall that ζ(s) =
∑
n≥1

1

ns
=
∏
p

(
1

1− 1
ps

) =
∏
p

(1 +
1

ps − 1
) which

is valid and converges when Re(z) > 1. So,for Re(z) > 1, ζ(s) =
∏
p

(
1

1− 1
ps

) =∏
p

(1 +
1

ps − 1
) converges and ζ(s) 6= 0
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Section 1.4: Average Orders

28 January 2013

Motivation: While we can find upper and lower bounds, at times, the functions
we are considering are not well-behaved. This motivates studying the average
behavior of arithmetic functions.

Definition. Suppose f(n) is arithmetic and g(x) is monotone increasing. We
say that g(n) is the average order of f(n) if∑

n≤x

f(n) = xg(x) + o(xg(x)).

Fact 1.4.1 The average order of d(n) is log (n).

Proof. ∑
n≤x

d(n) =
∑
n≤x

∑
d|n

1

=
∑
d≤x

[x
d

]
=
∑
d≤x

(x
d

+ εd
)

=x
∑
d≤x

1

d
+O(x)

=x

(
log (x) + γ +O

(
1

x

))
+O(x)

=x log (x) +O(x)

Notice:
x

x log (x)
→ 1

log (x)
→ 0 as x→∞.

Thus, x = o(x log (x)). So, we conclude the average order of d(n) is log (n).

Fact 1.4.2 There exists c ∈ R such that the average order of φ(n) is cn.
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Proof. We start with∑
n≤x

φ(n) =
∑
n≤x

n
∑
d|n

µ(d)

d

=
∑
de≤x

eµ(d)

=
∑
d≤x

µ(d)
∑
e≤xd

e

=
∑
d≤x

µ(d)


[x
d

] ([x
d

]
+ 1
)

2


=
∑
d≤x

(
x2µ(d)

2d2
+O

(x
d

))

=
x2

2

∑
d≤x

µ(d)

d2
+O(x log (x)).

Let c =

∞∑
d=1

µ(d)

d2
. This converges absolutely.

Then, ∑
n≤x

φ(n) = c

(
x2

2

)
+

−x2

2

∑
d≥x

µ(d)

d2

+O(x log (x)).

The sum is part of the ”tail.” Now, let’s investigate the tail:∣∣∣∣∣∣
∑
d≥x

µ(d)

d2

∣∣∣∣∣∣ ≤
∫ ∞
x−1

dx

x2
= o

(
1

x

)
.

When this term is multiplied by the
(
−x

2

2

)
, we have a term that is bounded

above by |x|multiplied by a constant. In particular, the entire tail:

−x2

2

∑
d≥x

µ(d)

d2

 =

O(x). Since this doesn’t contribute as much as O(x log (x)), it just gets sucked
into that term so that we have∑

n≤x

φ(n) =
cx

2
(x) +O(x log (x)).

Notice:
x log (x)

cx2

2

→ 2 log (x)

cx
→ 0 as x→∞.

Thus, the average order of φ(n) =
cn

2
.
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Exercise 1.4.3:
Show that the average order of σ1(n) =

∑
d|n

d is cn for c ∈ R.

Proof. Let de = n.∑
n≤x

σ1(n) =
∑
n≤x

∑
d|n

d

=
∑
de≤x

d

=
∑
e≤x

∑
d≤ xd

d

=
∑
e≤x

1

2

([
x

e

][
x

e

]
+ 1

)

=
∑
e≤x

1

2

((
x

e
+ ε

)(
x

e
+ ε+ 1

))

=
∑
e≤x

(
x2

e2
+ 2ε

x

e
+
x

e
+ ε2 + ε

)

=
∑
e≤x

(
x2

2e2
+O

(
x

e

))

=
x2

2

∑
e≤x

1

e2
+O(x log x)

Let c =
1

2

∞∑
e=1

1

e2
, and we can see this converges absolutely. Thus,

∑
n≤x

σ1(n) cx ·

(x). In other words, we have the average order of σ1(n) =
∑
d|n

d is cn for c ∈

R.

Exercise 1.4.4:

Show that
∑
n≤x

qk(n) = ckx+O

x1

k

 where ck =

∞∑
n=1

µ(n)

nk
.

Proof. We will make us of the identity qk(n) =
∑
dk|n

µ(d) to aid in this proof.
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We begin by writing ∑
n≤x

qk(n) =
∑
n≤x

∑
dk|n

µ(d)

=
∑
dk|n

[ x
dk

]
µ(d)

= x
∑
dk|n

µ(d)

dk
−
∑
dk|n

εdµ(d),

where 0 ≤ εd < 1. We easily bound the sum on the right by noting that∑
dk|n

εdµ(d) =
∑
d| k
√
n

εdµ(d)

≤
∑
d| k
√
n

1

= O(x1/k).

Setting ck =

∞∑
n=1

µ(n)

nk
, (which converges for k ≥ 2), we now have

∑
n≤x

qk(n) = x

ck − ∑
dk>x

µ(d)

dk

+O(x1/k).

Finally, note that this middle summation is no larger than our existing error
term. Indeed,∑

dk>x

µ(d)

dk
=
∑
d> k
√
x

µ(d)

dk
≤
∑
d> k
√
x

1

dk
≤
∫ ∞
k
√
x

dt

tk
= O(x1/k−1).

So we may conclude that
∑
n≤x

qk(n) = ckx+O(x
1
k ).
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Chapter 2: Primes in Arithmetic Progression
Section 2.1: Summation Techniques

Theorem (Dirichlet 1937-1840)
When (a, q) = 1,∃ infinitely many primes, p, such that p ≡ a( mod q).

Theorem (Partial Summation)
Suppose {an}∞n=1 ⊆ C, f(t) is differentiable on [x, 1] where x ∈ R. Set A(t) =∑
n≤x

an and A0 = 0.

Then,
∑
n≤x

anf(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t)dt.

Proof. First, suppose x ∈ N.
Then, start with the left hand side:∑

n≤x

anf(n) =
∑
n≤x

(A(n)−A(n− 1))f(n)

=
∑
n≤x

A(n)f(n)−
∑

n≤x−1

A(n)f(n+ 1)

=A(x)f(x) +
∑
n≤x

A(n)(f(n)− f(n+ 1))

=A(x)f(x)−
∑
n≤x

A(n)

∫ n+1

n

f ′(t)dt

=A(x)f(x)−
∑

n≤x−1

∫ n+1

n

A(t)f ′(t)dt

=A(x)f(x)−
∫ x

1

A(t)f ′(t)(d)t.

We will finish this proof letting x ∈ R next class.

Summation by Parts

30 January 2013

Last time we proved summation by parts for x ∈ Z. We now complete the proof.

32



Let x ∈ R.∑
n≤x

anf(n) =
∑
n≤[x]

anf(n)

= A([x])f([x])−
[x]∫
1

A(t)f ′(t)dt

= (A(x)f(x)−
x∫

1

A(t)f ′(t)dt) + [A([x])f([x])−A(x)f(x) +

x∫
[x]

A(t)f ′(t)dt]

noting that A(t) is constant in ([x], x) we get

= (A(x)f(x)−
x∫

1

A(t)f ′(t)dt) + [A(x)(f([x]− f(x))) +A(x)(f(x)− f([x]))]

= a(x)f(x)−
x∫

1

A(t)f ′(t)dt.

Fact 2.1.2
∑
n≤x

log n = x log x− x+O(log x)

Proof. Take f(t) = log t (so f ′(t) =
1

t
) and an = 1. Thus A(t) = [t]. Then∑

n≤x

log n =
∑
n≤

anf(n)

= A(x)f(x)−
x∫

1

A(t)f ′(t)dt

= [x] log x−
x∫

1

[t]
1

t
dt

= x log x+O(log x)−
x∫

1

(1 +O(
1

t
))dt

= x log x+O(log x)− x+O(log x)

= x log x− x+O(log x)

Exercise 2.1.3 Show that γ := lim
x→∞

∑
n≤x

1

n
− log x exists.

Exercises Suppose the prime number theorem i.e.
∑
p≤x

log p = x+ o(x). Show
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1.
∑
p≤x

1 =
x

log x
+ o

(
x

log x

)

2.
∑
p≤x

p =
x2

log x
+ o

(
x2

log x

)

3.
∑
p≤x

1

p
= log log x+ o(log log x).

Exercise 2.1.4: Show
∑
n≤x

d(n) = x log x+O(x).

Proof. ∑
n≤x

d(n) =
∑
nm≤x

1

=
∑
m≤x

[ x
m

]
=
∑
m≤x

( x
m

+ ε
)

=
∑
m≤x

x

m
+O(x)

= x
∑
m≤x

1

m
+O(x)

= x log(x) + γx+O(x)

= x log(x) +O(x).

Fact 2.1.5 Consider D(an, s) =
∑
n≥

an
ns

. Suppose A(x) =
∑
n≤x

an = O(xδ) for

some δ ∈ R. Then, for Re(s) > δ,

D(an, s) = s

∞∫
1

A(t)

ts+1
dt.

Hence D(an, s) converges for Re(s) > δ.

Proof. Take f(x) = x−s = e−s log x, so f ′(x) = −sx−(s+1) = − s
x
e−s log x. Then
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by partial summation

∑
1≤n≤x

an
ns

= A(x)f(x)−
x∫
a

A(t)f ′(t)dt

=
A(x)

xs
+ s

x∫
1

A(t)t−(s+1)dt

= s

x∫
1

A(t)

ts+1
dt+O(xδ−s).

Note that for Re(s) > δ we have

D(an, s) = lim
x→∞

s

x∫
1

A(t)

ts+1
dt+O(xδ−s)

= s

∞∫
1

A(t)

ts+1
dt

since

x∫
1

A(t)

ts+1
dt = O

(
xδ

xs
+ 1

)
and for Re(s) > δ,

xδ

xs
→ 0. Thus, when Re(s) >

δ,

x∫
1

A(t)

ts+1
dt = O(1). Hence D(an, s) converges for Re(s) > δ.

Fact 2.1.6

1. ζ(s) =
s

s− 1
− s

∞∫
1

{x}
xs+1

dx where x = [x] + {x}.

2. Thus lim
s→1+

(s− 1)ζ(s) = 1.

Proof. Note that ζ(s) = D(1, s), and
∑
n≤x

1 = [x] (i.e. δ = 1). So by previous

facts

ζ(s) = s

∞∫
1

[t]

ts+1
dt

= s

∞∫
1

t− {t}
ts+1

dt

= s

∞∫
1

dt

ts
dt− s

∞∫
1

{t}
ts+1

dt
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For Re(s) > 1

ζ(s) =
s

s− 1
− s

∞∫
1

t

ts+1
dt.

Thus

(s− 1)ζ(s) = s− (s− 1)s

∞∫
1

t

ts+1
dt.

So for Re(s) > 1 we have

0 ≤
∞∫

1

t

ts+1
dt ≤

∞∫
1

dt

ts+1
=

1

s
.

Which implies

0 ≤ s
∞∫

1

t

ts+1
dt ≤ 1.

Hence

0 ≤ (s− 1)s

∞∫
1

t

ts+1
dt ≤ (s− 1).

So

lim
s→1+

(s− 1)s

∞∫
1

t

ts+1
dt = 0

and therefore
lim
s→1+

(s− 1)ζ(s) = 1.

Euler Maclauren Summation

01 February 2013

Fact 2.1.7 F (x, t) =
∑

br(x)
tm

r!
=

text

et − 1
where {br(x)}∞r=0 is defined recur-

sively as b0(x) = 1, b′r(x) = rbr−1(x), and

∫ 1

0

br(x)dx = 0.

Proof.

d

dt
F (x, t) =

∑
r≥1

b′r(x)
tr

r!
=
∑
r≥1

rbr−1(x)
tr

r!
= t
∑
r≥1

br−1(x)
tr−1

(r − 1)!
= tF (x, t)
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=⇒ d

dt
logF (x, t) = t

So logF (x, t) = tx+ C(t) and hence F (x, t) = eC(t)ext. By definition of b′rs,∫ 1

0

F (x, t)d =

∫ 1

0

∞∑
r=0

br(x)
tr

r!
dx = 1

=⇒ 1 =

∫ 1

0

F (x, t)dx =

∫ 1

0

eC(t)extdx = eC(t) 1

t
ext|1x=0 = eC(t) e

t − 1

t

=⇒ eC(t) =
t

et − 1
.

Thus F (x, t) =
text

et − 1
.

Definition. br(x) - Bernoulli polynomial
Br(x) = br({x}) - Bernoulli function
Br = Br(0) = br(0) - Bernoulli number

Exercise 2.1.8 B2r+1 = 0, r ≥ 1

Hint: Show that
t

2
+

∞∑
r=0

br(0)
tr

r!
is an even function.

Proof. First note that
t

et − 1
+
t

2
=
t

2

et + 1

et − 1
.

If we replace t with −t, we get

−t
2

e−t + 1

e−t − 1
=
−t
2

1 + et

1− et
=
t

2

et + 1

et − 1

so thus
t

et − 1
+
t

2
is an even function. If we expand this as the power series

t

2
+

∞∑
r=0

br(0)
tr

r!
,

then we see from the following lemma that the coefficients for the odd powers
of t must vanish from which our result follows.

Lemma Let f(x) =

∞∑
n=0

anx
n. If f is even, then an = 0 for n odd.

Proof. Note that we may write

f(x) =

∞∑
n=0

a2nx
2n + x

∞∑
n=0

a2n+1x
2n.
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Then if f is even, we must have

∞∑
n=0

a2nx
2n + x

∞∑
n=0

a2n+1x
2n = f(x) = f(−x) =

∞∑
n=0

a2nx
2n − x

∞∑
n=0

a2n+1x
2n.

From this, we see that
∞∑
n=0

a2n+1x
2n

is identically zero so the lemma follows from the uniqueness of power series.

Remark A similar argument shows that if f is odd, all the coefficients for the
even powers of x must vanish.

b1(x) = x− 1

2

b2(x) = x2 − x− 1

6

b3(x) = x3 − 1

2
x2 +

1

2
x

Euler-Maclauren Summation
Let a, b ∈ Z. We use the Stieltjes integral with respect to the measure d[t].

d[x]([xi, xi+1]) = [xi+1]− [xi]∑
a<n≤b

f(n) =

∫ b

a

f(t)d[t]

Note

[t] = t− {t} =⇒ [t] = t−B1(t)− 1

2
=⇒ d[t] = dt− dB1

where
dB1([xi, xi+1]) = B1(xi+1)−B1(xi).

Thus ∑
a<n≤b

f(n) =

∫ b

a

f(t)dt−
∫ b

a

f(t)dB1.

Note∫ b

a

f(t)dB1 = fB1|ba−
∫ b

a

B1(t)f ′(t)dt = [f(b)B1(0)−f(a)B1(0)]−
∫ b

a

B1(t)f ′(t)dt =

B1(f(b)− f(a))−
∫ b

a

B1(t)f ′(t)dt
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Recall B′2(t) = 2B1(t). Then

∑
a<n≤b

f(n) =

∫ b

a

f(t)dt− [f(b)− f(a)]B1 +
1

2

∫ b

a

f ′(t)dB2(t) =

∫ b

a

f(t)dt− [f(b)− f(a)]B1 +
1

2
[f ′B2|ba −

∫ b

a

B2(t)f ′′(t)dt].

Repeating this process, we obtain Euler-MacLauren summation formula.

Theorem. Let k be a nonnegative integer and suppose f is (k + 1) times dif-
ferentiable on [a, b] with a, b ∈ Z. Then

b∑
n=a

f(n) =

∫ b

a

f(t)dt+
k∑
r=0

(−1)r+1

(r + 1)!
[f (r)(b)−f (r)(a)]Br+1+

(−1)k

(k + 1)!

∫ b

a

Bk+1(t)f (k+1)(t)dt.

Proof. The base case has been shown above. Suppose the claim holds for a
nonnegative integer k − 1. Since B′k+1(t) = (k + 1)Bk(t), we can write∫ b

a

Bk(t)f (k)(t)dt =
1

k + 1

∫ b

a

f (k)(t)dBk+1.

Now, integrating by parts using u = f (k) and dv = dBk+1, we obtain∫ b

a

f (k)(t)dBk+1 = f (k)(t)Bk+1(t)
∣∣∣b
a
−
∫ b

a

Bk+1(t)f (k+1)(t)dt

= Bk+1(f (k)(b)− f (k)(a))−
∫ b

a

Bk+1(t)f (k+1)(t)dt.

Now, using the induction hypothesis and substitution, we confirm the induction
claim by writing

b∑
n=a

f(n) =

∫ b

a

f(t)dt+

k−1∑
r=0

(−1)r+1

(r + 1)!
[f (r)(b)− f (r)(a)]Br+1 +

(−1)k−1

(k)!

∫ b

a

Bk(t)f (k)(t)dt

=

∫ b

a

f(t)dt+

k−1∑
r=0

(−1)r+1

(r + 1)!
[f (r)(b)− f (r)(a)]Br+1

+
(−1)k−1

(k)!
· 1

k + 1

(
Bk+1(f (k)(b)− f (k)(a))−

∫ b

a

Bk+1(t)f (k+1)(t)dt

)

=

∫ b

a

f(t)dt+

k∑
r=0

(−1)r+1

(r + 1)!
[f (r)(b)− f (r)(a)]Br+1 +

(−1)k

(k + 1)!

∫ b

a

Bk+1(t)f (k+1)(t)dt.
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Exercise (2.1.10). Show that∑
n≤x

1

n
= log(x) + γ +

1

2x
+

1

12x2
+O

(
1

x3

)
.

Proof. blah

Exercise (2.1.11). Show, using Euler-MacLauren summation, that∑
n≤x

1√
n

= 2
√
x+B +O

(
1√
x

)
,

where B is some constant.

Proof. Take f(t) = 1/
√
t, a = 1, b = x, and k = 0. Then using Euler-MacLauren

summation, we have∑
n≤x

1√
n

=

∫ x

1

1√
t
dt+

1

2

(
1√
x
− 1

)
− 1

4

∫ x

1

B1(t)t−3/2dt.

Observe that this last integral indeed converges, as we can write it as∫ x

1

B1(t)t−3/2dt =

∫ ∞
1

B1(t)t−3/2dt−
∫ ∞
x

B1(t)t−3/2dt

= C +O

(
1√
x

)
.

Thus we have∑
n≤x

1√
n

= 2(
√
x− 1) +

1

2

(
1√
x
− 1

)
− 1

4

(
C +O

(
1√
x

))

= 2
√
x+B +O

(
1√
x

)
.

Exercise (2.1.12). Let z be a non-zero complex number, and let δ > 0 so that
| arg(z)| < π − δ. Show that

n∑
j=0

log(z + j) =

(
z + n+

1

2

)
log(z + n)− n−

(
z +

1

2

)
log(z) +

∫ n

0

B1(x)

z + x
dx.
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Proof. Take a = 0, b = n, f(t) = log (z + t), and k = 0. Then using Euler-
MacLauren summation, we obtain

n∑
j=0

log (z + j) =

∫ n

0

log (z + t)dt+
1

2
(log (z + n)− log z) +

∫ n

0

B1(t)

z + t
dt

= (z + n) log (z + t)− (z + n)− z log z + z +
1

2
(log (z + n)− log z) +

∫ n

0

B1(t)

z + t
dt

=

(
z + n+

1

2

)
log (z + n)− n−

(
z +

1

2

)
log z +

∫ n

0

B1(t)

z + t
dt,

where differentiating log (z + t) is valid because | arg(z)| stays away from the
principal branch cut.

2.2: Characters (mod q)

04 February 2013

Definition. A character mod q is a group homomorphism χ : (Z/qZ)∗ → C∗.

Recall from group theory that |(Z/qZ)∗| = φ(q), and every group element
raised to this power is the identity. This means that for any a ∈ (Z/qZ)∗, we
can write

1 = χ(1) = χ(aφ(q)) = (χ(a))φ(q).

Thus, the image of a character is really just a φ(q)th root of unity.

Definition. We denote the nth roots of unity by µn = {z ∈ C : zn = 1}.

Remark. We can now revise our definition of a character to be any group ho-
momorphism χ : (Z/qZ)∗ → µφ(q).

We make a few brief observations about our new definitions.

1. Set ξn = e2πi/n and observe that ξnn = e2πi = 1, so ξn ∈ µn.

2. In fact, we can show that µn = {ξmn : 0 ≤ m ≤ n− 1}.
Let z = reiθ be any element of µn. Then for zn = 1, we must have

r = 1 and θ =

(
2πm

n

)
.

Using the division algorithm, write m = na+ b for some 0 ≤ b < n. Then

θ =

(
2πm

n

)
= a(2π) +

(
2πb

n

)
,

and so taking all possible values of b yields all n roots of unity.
For our purposes, this implies that

µφ(q) = {ξmφ(q) : 0 ≤ m ≤ φ(q)}.
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3. From group theory, we know that

|ξan| =
|ξn|

(a, |ξn|)
=

n

(a, n)
,

so when (a, n) = 1, then µn =< ξn >=< ξan > .

Definition. A Dirichlet character (mod q) is the natural domain extension of
a character to all of Z. That is, it is the extension χ : Z→ µφ(q) given by

χ(n) =

{
χ([n]q) if (q, n) = 1
0 otherwise.

Exercise (2.2.1). Show that χ is completely multiplicative.

Proof. If (mn, q) = 1, then (m, q) = 1 and (n, q) = 1. So

χ(mn) = χ([mn]q) = χ([m]q[n]q) = χ([m]q)χ([n]q) = χ(m)χ(n).

If (mn, q) 6= 1, then either (m, q) 6= 1 or (n, q) 6= 1. In either case,

χ(mn) = 0 = χ(m)χ(n).

Definition. A Dirichlet L-series is an infinite series of the form

L(s, χ) = D(χ, s) =

∞∑
n=1

χ(n)

ns
.

Note that when Re(s) > 1, then L(s, χ) converges absolutely.

Exercise (2.2.2). For Re(s) > 1, show that

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

.

Proof. Since χ is completely multiplicative, we can write

L(s, χ) =
∏
p

( ∞∑
k=0

χ(pk)

pks

)

=
∏
p

( ∞∑
k=0

(
χ(p)

ps

)k)
.
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When Re(s) > 1, the inside sum converges, so recognizing this geometric series
we have

L(s, χ) =
∏
p

(
1

1− χ(p)
ps

)

=
∏
p

(
1− χ(p)

ps

)−1

.

Definition. The trivial Dirichlet character (mod q), denoted χ0 : Z→ µφ(q), is
given by

χ0(n) =

{
1 if (q, n) = 1
0 otherwise.

Fact. If χ, ψ are Dirichlet characters (mod q), then so are χψ and χ, where

χ · ψ(n) = χ(n)ψ(n) and χ(n) = χ(n).

Note also that χχ(n) = χ(n)χ(n) = 1 if (n, q) = 1, and 0 otherwise. In
other words, χχ = χ0. Recognizing that complex multiplication is associative
and commutative, we have shown that the set of Dirichlet characters forms an
Abelian group under multiplication.

Furthermore, because both (Z/qZ)
∗

and µφ(q) are finite groups, we know the
set of characters mod q is also finite. Therefore, the set of Dirichlet characters
is actually a finite Abelian group under multiplication.

To learn more about the structure of (Z/qZ)
∗
, consider factoring q = pa11 pa22 . . . pakk .

By the Chinese Remainder Theorem, we know that

Z/qZ ∼= Z/pa11 Z× . . .× Z/pakk Z,

but moreover, for our purposes, we have

(Z/qZ)
∗ ∼= (Z/pa11 Z)

∗ × . . .× (Z/pakk Z)
∗
.

So to understand the structure of (Z/qZ)
∗
, we should really examine the struc-

ture of (Z/paZ)
∗

for prime p.

Fact (2.2.3). Recall from elementary group theory that (Z/pZ)
∗

is cyclic.

Proof. Knowing that (Z/pZ)
∗

is finite, let d1, d2, . . . , dr be a list of distinct
orders of the elements in (Z/pZ)

∗
. Set e = lcm(d1, d2, . . . , dr) and factor e =

pa11 pa22 . . . pakk . For each p
aj
j , there must be some di such that

p
aj
j | di.
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So di = p
aj
j tj , where pj 6 |tj . Therefore, there is some element in (Z/pZ)

∗
- call

it xj - such that
|xj | = di = p

aj
j tj .

In particular then, |xtjj | = p
aj
j , so

|xt11 . . . xtkk | = pa11 . . . pakk = e.

Because the order of an element divides the order of the group, we know e | p−1,
and so e ≤ p − 1. On the other hand, however, every element y ∈ (Z/pZ)

∗

satisfies the polynomial ye − 1 = 0. Thus, upon factoring this polynomial with
at least p − 1 roots over the field (Z/pZ)

∗
, we also conclude that p − 1 ≤ e.

Therefore, e = p− 1, and so (Z/pZ)
∗

is cyclic.

Definition. An element g ∈ (Z/pZ)
∗

of order p − 1 is called a generator or a
primitive root mod p.

Exercise (2.2.4). Suppose p > 2 is prime. Then (Z/paZ)
∗

is cyclic.

Proof. Hint: Let g be a primitive root mod p and show that either g or g+ p is
a primitive root mod p2. Then show that if g is a primitive root mod p2, then
g is in fact a primitive root mod pk for any integer k.

We now only need to take care of the case when p = 2. Observe that

(Z/2Z)
∗

= {1} =< 1 >

(Z/4Z)
∗

= Z/2Z = {1, 3} =< 3 >

(Z/8Z)
∗

= Z/2Z× Z/2Z = {1, 3, 5, 7} =< 5,−1 > (not cyclic!).

Exercise (2.2.5). For a ≥ 3, show that the order of 5 in (Z/2aZ)
∗

is 2a−2.

Proof. Suppose we knew that for n ≥ 3,

52n−3

≡ 1 + 2n−1 mod 2n. (2)

Upon squaring both sides of this equivalence, we obtain

52n−2

≡ (1 + 2n−1)2

≡ 1 + 2n + 22n−2

≡ 1 + 2n(1 + 2n−2)

≡ 1 mod 2n,
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which is the desired result. So we set about proving (1). For n = 3, the
statement is quickly verified. Suppose the claim holds for some integer k ≥ 3,
that is, there is some integer m so that

52k−3

= 1 + 2k−1 + 2k ·m.

Squaring both sides of this equation yields

52k−2

= (1 + 2k−1 + 2k)2

= 1 + 2k + 22km+ 2k+1m+ 22k−2 + 22km2

= 1 + 2k + 2k+1(2k−1m+m+ 2k−3 + 2k−1m2)

≡ 1 + 2k mod 2k+1.

And so
52(k+1)−3

≡ 1 + 2(k+1)−1 mod 2k+1.

Exercise (2.2.6). Use the previous exercise to conclude that for a ≥ 3,

(Z/2aZ)
∗ ∼= Z/2Z× Z/2a−2Z =< −1 > × < 5 > .

6 February 2013

Fact 2.2.7:

The number of {χ (mod q)} = ϕ(q)

Proof.
Write q = 2a0pa11 ...pakk (a0 ≥ 0)

Recall that

(Z/qZ)∗ ∼=
k⊕
i=1

(Z/paii Z)∗ × Z/2Z× Z/a0Z

For any χmodp), we can write

χ = ψ0χ0χ1...χk

where if qi ∈ (Z/qZ)∗ is a generator for (Z/pajj Z)∗ and we take −1, g0 to be
generators for the 2− part if present then

χj = χ(−1) = 1 χj(g0) = 1

χj(gi) = 1 if i 6= j

χj(gj) = χ(gj)

Similarly for χ0, ψ0
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Note:

We can think of χi as a character modp
aj
j . This is because

If a ∈ Z/qZ∗ then we can write

a = (−1)r0(g0)b0(g1)b1 ...(gk)bk

for since 0 ≤ c0 ≤ 1
0 ≤ b0 ≤ a0 − 2

0 ≤ bi ≤ ai
Then

χ(a) = χ((−1)c0)χ((g0)b0
k∏
j=1

χ(qj)

= ψ0(a)χ0(a)...χk(a)

Note:

1. (Z/paii )Z)∗ ∼= Z/(pi)ai−1(pi)
−1Z.

The number of {χ (mod p)aii } = ϕ((pi)
ai) because if χ is a character

(mod p)aii , then χ(gkj ) = χ(gj)
k.

χl(gj) = (l
2πi

ϕ(p
ai
i

) )l

covers all characters (mod p)aii .

2. {χ (mod 2)a0} ∼= {ψ0χ0|ψ0(−1) = χ(−1)χ0(5) = χ(5)}

The number of {χ (mod 2)a0} = 22̇a2 = ϕ(2a0).

The number of {χ (mod p)} = ϕ(2a0 )̇

k∏
i=1

ϕ(paii ) because χ = ψ0χ0χ1...χk.

Fact 2.2.8:
If x 6= x0 then

∑
a (mod q)

χ(a) = 0.
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Proof.
Since χ 6= χ0 (mod q) there exists (b, a) = 1 such that χ(b) 6= 1.

s :=
∑

a (mod q)

χ(a) =
∑

a (mod q)

χ(ab) = χ(b)
∑

a (mod q)

χ(q) = χ(b)

Hence (1− χ(b))s = 0 and 1− χ(b) 6= 0. So s = 0.

Corollary. ∑
a (mod q)

χ(a) =

{
ϕ(q) if χ = χ0

0 otherwise

Fact:

For q > 1 ∑
χ (mod q)

χ(n) =

{
ϕ(q) if n ≡ 1(q)
0 otherwise

Proof.
If (n, q) > 1 then χ(n) = 0 for all χpmodq. If m ≡ 1 (mod q) then χ(n) = 1

for all χ (mod q).∑
χ (mod q)

χ(n) is equal to {χ (mod q)} = ϕ(q).

Suppose n 6= 1 (mod q) and (n, q) = 1. Write q =

k∏
i=1

paii .

Write q =

k∏
i=1

paii . Then n 6= 1 (mod p)aii for at least one value of i. Without

loss of generality i = 1, ψ2 = ψ3 = ... = ψk = ψ0 (mod q) and ψ1(gk) =

(l
2πi

ϕ(p
ai
i

) )k.

Define ψ = ψ2 × ψ3 × ...× ψk.

Then 1 = ψ(n) = (l
2πi

ϕ(p
ai
i

) )k where n = gk (mod p)aii .
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⇔ ϕ(pa11 )n | k ⇔ k = 0

⇔ n 6= 1 (mod p)aii

Note:

T =
∑

χ (mod q)

χ(n) =
∑

χ (mod q)

ψχ(n) = ψ(n)T ⇒ (1− ψn)T = 0 and1-ψ(n) 6= 0

⇒ T = 0

Section 2.3: Dirichlet’s Theorem

8 February 2013

Recall:
A way to prove there are infinitely many primes by analyzing the zeta function:

We have ζ(s) =
∑
n≥1

1

n2
=
∏
p

1

1− 1
ps

. This implies:

log ζ(s) = −
∑
p

log

(
1− 1

ps

)
=
∑
p

∑
n≥1

1

n(ps)2

=
∑
p

1

ps
+
∑
p

∑
n≥2

1

nps
.

Note: Let’s focus on the second term of the above expression.
For Re(s) > 1, ∑

p

∑
n≥2

∣∣∣∣ 1

npns

∣∣∣∣ =
∑
p

∑
n≥2

1

npnRe(s)
.

Furthermore, we may rewrite

pns = pn(a+bi) = exp (log (p)(n)(a+ bi)) = exp (an log (p)) exp (nb log (p)i).

Now, if we consider

|pns| = |1| exp (an log (p)) = pan = pnRe(s).
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Thus, we have

∑
p

∑
n

1

npRe(s)
≤
∑
p

∑
n≥2

1

pn
≤
∑
p

1

p2

 1

1− 1

p

 =
∑
p

1

p(p− 1)
≤
∑
n≥2

1

n2
<∞.

This means
∑
p

∑
n≥2

1

nps
converges.

So, we have log (ζ(s)) =
∑
p

1

ps
+
∑
p

∑
n≥2

1

npns
.

Since have know lim
s→1+

ζ(s) =∞⇒ lim
s→1+

log (ζ(s)) =∞⇒
∑
p

1

p
=∞.

Thus, there are infinitely many primes.

Goal: We are working towards showing if (a, q) = 1,
∑
p≡a(q)

1

p
=∞.

Hecho 2.3.1
lim
s→1+

(log (L(s, χ0))) =∞.

Proof. Recall:

χ0(p) =

{
0 if p | q
1 if p 6 |q

Now, Consider

L(s, χ0) =
∏
p

(
1− χ0(p)

ps

)−1

=
∏
p 6|q

(
1− 1

ps

)−1

= ζ(s)
∏
p||q

(
1− 1

ps

)
.

We chose these expressions because ζ(s) gives us all the primes - including those

that divide q. We multiplied this by
∏
p||q

(
1− 1

ps

)
to cancel out all the terms

that divide q so we have equivalent expressions.

Note: for s = 1,
∏
p|q

(
1− 1

p

)
=
φ(q)

q
(a finite number).

Thus,

lim
s→1+

(L(s, χ0)) =
φ(q)

q
lim
s→1+

ζ(s) =∞⇒ log (L(s, χ0)) =∞.

49



Fact 2.3.2
For Re(s) > 1,

∑
χ(mod q)

log (L(s, χ)) = φ(q)
∑
n≥1

∑
pn≡1(q)

1

npns

= φ(q)

 ∑
p≡1(q)

1

ps
+
∑
n≥2

∑
pn≡1(q)

1

nps

 .

Proof.

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

⇒ log (L(s, χ)) = −
∑
p

log

(
1− χ(p)

ps

)

=
∑
p

∑
n≥1

(
χ(p)

ps

)n
=
∑
p

∑
n≥1

χn(p)

npns

=
∑
p

∑
n≥1

χ (pn)

npns
.

Now that we have a nice expression to work with, we will consider the sum:∑
χ(mod q)

(L(s, χ)) =
∑

χ(mod q)

∑
p

∑
n≥1

χ (pn)

npns

=
∑
p

∑
n≥1

1

npns

∑
χ

χ (pn)

=
∑
n≥1

∑
pn≡1(q)

φ(q)

npns

= φ(q)
∑
n≥1

∑
pn≡1(q)

1

npns
.

Notice the rearrangement over the second equality is justified because Re(s) > 1,
we have absolute convergence (at the end). Also, the penultimate equality

follows from the fact that
∑
χ

χ (pn) counts characters. In particular, recall:

∑
χ

χ(p) =

{
φ(q) if pn ≡ 1(q)
0 o/w

Hence, we have the result.
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Notation: we denote the order of p in (Z/qZ)
∗

as orderq(p).

Fact 2.3.3
For Re(s) > 1, ∑

n≥1

an
ns

=
∏
χ( q)

L(s, χ)

then a1 = 1 and an = 0 for n ≥ 2.

Proof.

∏
χ(mod q)

L(s, χ) = exp

φ(q)
∑
n≥1

∑
pn≡1(q)

1

npPns


=
∏
n≥1

∏
pn≡1(q)

φ(q)

npns

=
∏
n≥1

[ ∞∑
k=1

(
φ(q)

n

)k (
1

k

)(
1

pnks

)]
Now, let n = f · orderq(p) so that the above expression equals

∏
p

∏
f=1

∞∑
k=0

(
φ(q)

forderq(p)

)k (
1

k

)(
1

pfksorderq(p)

)
Furthermore, we may identify the coefficients.
The important thing to note, though, is that each ai is nonnegative.

11 February 2013

Fact (2.3.4). For a nontrivial character χ mod q, we have that∣∣∣∣∣∣
∑
n≤x

χ(n)

∣∣∣∣∣∣ ≤ q.
Proof. First, write

[x] = kq + r, where 0 ≤ r < q.

Recall we showed that
∑
n≤q

χ(n) = 0 and so
∑
nk≤q

χ(n) = 0 for any k. So we have

∑
n≤x

χ(n) =
∑
n≤kq

χ(n) +
∑

kq<n≤kq+r

χ(n) =
∑

kq<n≤kq+r

χ(n).

The final summation is just summing r roots of unity, so∣∣∣∣∣∣
∑
n≤x

χ(n)

∣∣∣∣∣∣ ≤
∑

kq<n≤kq+r

|χ(n)| ≤ q − 1 < q.
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Corollary. L(s, χ) converges for Re(s) > 0.

Proof. From Fact 2.1.5, we have

L(s, χ) = s

∫ ∞
1

s(t)

ts+1
dt,

where s(t) =
∑
n≤t

χ(n). The result follows from the approximation in the previ-

ous fact.

Fact (2.3.5). For a nontrivial character χ mod q, we can show that

L(1, χ) 6= 0 ⇐⇒ L(1, χ̄) 6= 0.

Proof. We show one direction because the other is quite similar. Supposing
L(1, χ̄) is nonzero, write

L(1, χ̄) = lim
x→∞

∑
n≥x

χ̄(n)

n

= lim
x→∞

∑
n≥x

χ(n)

n

= L(1, χ).

If the conjugate of L(1, χ) is nonzero, then certainly L(1, χ) is nonzero as well.

Fact (2.3.6). The residue of the pole at s = 1 of L(s, χ0) is φ(q)/q. In other
words, we have that

lim
s→1+

(s− 1)L(s, χ0) =
φ(q)

q
.

Proof. Using a number of earlier results, we compute

lim
s→1+

(s− 1)L(s, χ0) = lim
s→1+

(s− 1)ζ(s)
∏
p|q

(
1− 1

p

)

=
φ(q)

q
lim
s→1+

(s− 1)ζ(s)

=
φ(q)

q
.

Fact (2.3.7). If L(1, χ) 6= 0 for all non-trivial characters χ mod q, then

lim
s→1+

(s− 1)
∏
χ(q)

L(s, χ) 6= 0.
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Moreover, part of Dirichlet’s theorem holds under this assumption:∑
p≡1(q)

1

p
=∞.

Proof. We begin by computing

lim
s→1+

(s− 1)
∏
χ(q)

L(s, χ) = lim
s→1+

(s− 1)
φ(q)

q
ζ(s)

∏
χ(q)
χ 6=χ0

L(s, χ)

=
φ(q)

q
lim
s→1+

∏
χ(q)
χ 6=χ0

L(s, χ)

6= 0 by hypothesis.

In particular then,

lim
s→1+

∏
χ(q)

L(s, χ) =∞.

For the second claim, note that for Re(s) > 1, we can write∏
χ(q)

L(s, χ) =
∏
χ(q)

∏
p

1

1− χ(p)
ps

= exp

∑
χ(q)

∑
p

∑
k≥0

χ(pk)

pks


= exp

∑
p

∑
k≥0

1

pks

∑
χ(q)

χ(pk)



= exp

φ(q)
∑
p

pk≡1(q)

1

pks



= exp

φ(q)


∑
p

p≡1(q)

1

p
+

∑
p
k≥2

pk≡1(q)

1

pks


 .

Since this product diverges to infinity as s goes to 1 from the right, and since
the second sum is convergent (via comparison to the 2nd degree overharmonic
series), we have that the leftover sum diverges, which is the desired result.

Fact (2.3.8). Fix (a, q) = 1. For any integer n, we have that∑
χ(q)

χ̄(a)χ(n) =

{
φ(q) if n ≡ a mod q
0 otherwise.
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Proof. Recall that χ̄(a) = χ(a) = (χ(a))−1χ(a−1). So we have∑
χ(q)

χ̄(a)χ(n) =
∑
χ(q)

χ(a−1n) =

{
φ(q) if n ≡ a mod q
0 otherwise.

Exercise (2.3.9). Fix (a, q) = 1 and assuming L(1, χ) 6= 0 for all nontrivial
characters χ mod q. Show that

lim
s→1+

(s− 1)
∏
χ(q)

L(s, χ)χ̄(a) 6= 0.

Then, deduce that ∑
p≡a(q)

1

p
=∞.

Proof. In the same vein of (2.3.7), we compute

lim
s→1+

(s− 1)
∏
χ(q)

L(s, χ)χ̄(a) = lim
s→1+

(s− 1)L(s, χ0)χ̄0(a)
∏
χ(q)
χ6=χ0

L(s, χ)χ̄(a)

= lim
s→1+

(s− 1)L(s, χ0)
∏
χ(q)
χ 6=χ0

L(s, χ)χ̄(a)

=
φ(q)

q
lim
s→1+

∏
χ(q)
χ 6=χ0

L(s, χ)χ̄(a)

6= 0, by hypothesis.

In particular, we have

lim
s→1+

∏
χ(q)

L(s, χ)χ̄(a) =∞.

lim
s→1+

∑
χ(q)

χ̄(a) logL(s, χ) =∞.
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For the second claim, observe that (2.3.2) gives us

∑
χ(q)

χ̄(a) logL(s, χ) =
∑
χ(q)

χ̄(a)
∑
p

∑
k≥0

χ(pk)

kpks

=
∑
p

∑
k≥0

1

kpks

∑
χ(q)

χ̄(a)χ(pk)

= φ(q)
∑
p

pk≡a(q)

1

kpks

= φ(q)


∑
p

p≡a(q)

1

ps
+

∑
p

pk≡a(q)
k≥2

1

kpks

 .

Taking s → 1+ here, the LHS diverges to infinity. Seeing as the second sum
on the RHS is convergent (compare to second degree overharmonic series), we
must have ∑

p≡a(q)

1

p
=∞.

Note that the past few results prove Dirichlet’s theorem under the very
strong hypothesis that χ nontrivial and L(1, χ) 6= 0. The next few results are
aimed at proving that this hypothesis always holds. For convenience, we’ll set

F (s) :=
∏
χ(q)

L(s, χ) =
∑
n≥1

an
ns
,

where a1 = 1 and an ≥ 0 for n ≥ 2.

Fact (2.3.10). Suppose χ1 mod q is not real (that is, χ1 6= χ̄1). Then L(1, χ1) 6=
0.

Proof. By the corollary to (2.3.4), L(1, χ1) converges. To obtain a contradiction,
suppose L(1, χ1) = 0. Write

L(s, χ1) = (s− 1)g(s, χ1),

where g(s, χ1) is some continuous function when Re(s) > 0 except when s = 1.
Recall from (2.1.5) and (2.3.4) that

L(s, χ1) = s

∫ ∞
1

s(t)

ts+1
dt, where s(t) =

∑
n≤t

χ1(n) and |s(t)| ≤ q.
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In particular, then, L(s, χ1) is absolutely convergent when Re(s) > 0 and
L(1, χ1) is differentiable. Therefore, set

g(1, χ1) = L′(1, χ1) = lim
s→1+

L(s, χ1)− L(1, χ1)

s− 1
= lim
s→1+

g(s, χ1).

So g(s, χ1) is continuous whenever Re(s) > 0. From (2.3.5), we also have that
L(1, χ̄1) = 0, so we could similarly write

L(s, χ̄1) = (s− 1)g(s, χ̄1),

where g(1, χ̄1) = L′(1, χ̄1). Then we have

lim
s→1+

∏
χ(q)

L(s, χ) = lim
s→1+

L(s, χ0) · (s− 1)2g(s, χ1)g(s, χ̄1) ·
∏
χ6=χ0
χ6=χ1
χ6=χ̄1

L(s, χ)

= φ(q)L′(1, χ1)L′(1, χ̄1)
∏
χ 6=χ0
χ 6=χ1
χ 6=χ̄1

L(1, χ) · lim
s→1+

(s− 1)2

= 0.

But this product is F (s), which is greater than or equal to one when Re(s)→ 1+.
Contradiction. Therefore, L(1, χ) 6= 0.

Dirichlet’s Hyperbolic Method

13 February 2013

Note: I intend to clean this up a bit in the next day or two.
Suppose f = g ∗ h. Then

f(n) =
∑
d|n

g(d)h
(n
d

)
=
∑
ed=n

g(d)h(e).

Theorem Given f = g ∗ h, for any y > 0,∑
n≤x

f(n) =
∑
d≤y

g(d)H
(x
d

)
+
∑
d≤ xy

h(d)G
(x
d

)
−G(y)h

(x
d

)

where G(x) =
∑
n≤x

g(n) and H(x) =
∑
n≤x

h(n).
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Proof. Suppose y > 0.∑
n≤x

f(n) =
∑
n≤x

∑
de=n

g(d)h(e)

=
∑
de≤x

g(d)h(e)

=
∑

de≤x,d≤y

g(d)h(e) +
∑

de≤x,d<y

g(d)h(e)

=
∑
d≤y

g(d)
∑
e≤ xd

h(e) +
∑
e≤ xy

h(e)
∑

y<d≤ xe

g(d)

=
∑
d≤y

g(d)H
(x
d

)
+
∑
e≤ xy

h(e)
[
G
(x
e

)
−G(y)

]
=
∑
d≤y

g(d)H
(x
d

)
+
∑
d≤ xy

h(d)G
(x
d

)
−G(y)H

(x
d

)
.

Exercise (2.4.2). Show
∑
n≤x

σ0(n) = x log(x) + (2γ − 1)x+O(
√
x).

Proof. First, notice that
∑
n≤x

σ0(n) =
∑
n≤x

∑
d|n

1 =
∑
n≤x

∑
ed=n

1.

With this in mind, let’s choose g(d) = 1, h(e) = 1 so that H(x) = G(x) =∑
n≤x

1 = [x]. Letting y =
√
x, we will apply Dirichlet’s Hyperbola Method:

∑
n≤x

σ0(n) =
∑
d≤
√
x

1
[x
d

]
+
∑
d≤
√
x

1
[x
d

]
− [
√
x]2

= 2
∑
d≤
√
x

[x
d

]
− [
√
x]2

= 2
∑
d≤
√
x

(x
d

)
− x+O

(√
x
)

= 2x
∑
d≤
√
x

(
1

d

)
− x+O

(√
x
)

= 2x

(
1

2
log
√
x+ γ +O

(
1√
x

))
− x+O

(√
x
)

= x log x+ (2γ − 1)x+O
(√
x
)
.
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Fact 2.4.3 Suppose χ( mod n) is real. Define f(n) = χ ∗ 1 =
∑
d|n

χ(d). Then

f(1) = 1 and f(n) ≥ 0 for all n. Also if n is a square, then f(n) ≥ 1.

Proof. Since χ is multiplicative, f is multiplicative. Write n = pa11 ...pakk . Then

f(n) =
∏
pα||n

f(pα) =
∏
pα||n

∞∑
k=0

χ(p)k =


α+ 1 χ(p) = 1

1 χ(p) = −1, α even

0 χ(p) = −1, α odd

.

Thus f(1) = 1 and f(n) ≥ 0 for all n. In addition, if n is a square, then α is
always even so the result follows.

Fact 2.4.4 Let f(n) =
∑
d|n

χ(d) where χ 6= χ0 is a character mod q. Then

∑
n≤x

f(n)√
n

= 2L(1, χ)
√
x+O(1).

Proof. We will apply Dirichlet’s hyperbola method with y =
√
x.

Note:
f(n)√
n

=
1√
n

∑
d|n

χ(d) =
∑
d|n

χ(d)√
n

=
∑
de=n

χ(d)√
d

1√
e
.

We will take g(d) =
χ(d)√
d
, h(d)

1√
d
, y =

√
x in Dirichlet’s hyperbola method.

Notes:

H(x) =
∑
n≤x

1√
n

= 2
√
x+B +O

(
1√
x

)
Exercise 2.2.11

G(x) =
∑
n≤x

χ(n)√
n

=

∞∑
n=1

χ(n)√
n
−
∑
n>x

χ(n)√
n

= L

(
1

2
, χ

)
−
∑
n>x

χ(n)√
n

Use partial summation with an = χ(n), f(t) =
1√
t
, f ′(t) = − 1

2t3/2
. Here A(t) =∑

n≤t

χ(n) ≤ q so

∑
x<n≤y

χ(n)√
n

= A(y)f(y) =

∫ y

x

A(t)f ′(t)dt−A(x−1)f(x) =
A(y)
√
y

+

∫ y

x

A(t)

2t3/2
− A(x)√

x+ 1
.

Letting y →∞, ∑
n>x

χ(n)√
n
<<

∫ ∞
x

dt

t3/2 + 1√
x

.

Thus G(x) = L

(
1

2
, χ

)
+O

(
1√
x

)
.
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Lemma For ε > 0, χ 6= χ0,
∑
n≤x

χ(n)

nε
= L(ε, χ) +O

(
1

xε

)
.

Proof. Exercise

Now use Dirichlet’s hyperbola method to write∑
n≤x

f(n)√
n

=
∑
d≤
√
x

χ(d)√
d
H
(x
d

)
+
∑
d≤
√
x

1√
d
G
(x
d

)
−G(y)H

(
x

y

)

=
∑
d≤x

χ(d)√
d

(
2

√
x

d
+O(1)

)
+
∑
x≤d

1√
d

(
L

(
1

2
, χ

)
+O

(√
d√
x

))
−
(
L

(
1

2
, χ

)
+O

(
1

x1/4

))(
2x1/4 +O(1)

)

= 2
√
x
∑
d≤x

χ(d)√
d

+O(1) + L

(
1

2
, χ

)∑
d≤x

1√
d

+O

 1√
x

∑
d≤
√
x

1

− 2L

(
1

2
, χ

)
x1/4.

Facts:

2
√
x+B +O(

1√
x

)

G(x) = L

(
1

2
, χ

)
+O

(
1√
x

)
From Dirichlet’s hyperbola method, y =

√
x so∑

n≤x

f(n)√
n

=
∑
d≤
√
x

χ(d)√
d
H
(x
d

)
+
∑
d≤
√
x

1√
d
G
(x
d

)
−G

(√
x
)
H(
√
x)

=
∑
d≤
√
x

χ(d)√
d

(
2
√
x√
d

)
+B +O

(√
d√
x

)
+
∑
d≤x

1√
d

(
L

(
1

2
, χ

)
+O

(√
d√
x

))
−
(
L

(
1

2
, χ

)
+O

(
1

x1/4

))
(2x1/4 +B +O

(
1

x1/4

)
).

We’ll simplify these three terms separately. For the first, observe that we can
rewrite this as

2
√
x
∑
d≤
√
x

χ(d)

d
+
∑
d≤
√
x

χ(d)√
d
O(1).

Using partial summation on this second bit, we’ll take f(t) = t−1/2 and ad =
χ(d). Then it can be shown that∑

d≤
√
x

χ(d)√
d
� 1.

So the first term reduces to

2
√
x
∑
d≤
√
x

χ(d)

d
+O(1).
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Regarding the second term, we can use partial summation with f(t) = 1/
√
t

and an = 1 to show that ∑
d≤
√
x

1√
d

= 2x1/4 +O(1).

So we have∑
n≤x

f(n)√
n

= 2
√
x
∑
d≤
√
x

χ(d)

d
+O(1) + 2x1/4L

(
1

2
, χ

)
+O(1)− 2x1/4L

(
1

2
, χ

)
+O(1).

= 2
√
x
∑
d≤
√
x

χ(d)

d
+O(1).

We will soon show in (2.4.6) that
∑
d>
√
x

χ(d)

d
= O

(
1√
x

)
, so we conclude by

writing ∑
n≤x

f(n)√
n

= 2
√
x

(
L(1, χ) +O

(
1

x

))
+O(1)

= 2
√
xL(1, χ) +O(1).

.

Fact (2.4.5). Let χ be a non-trivial, real character mod q. Then L(1, χ) 6= 0.

Proof. To lead to a contradiction, assume L(1, χ) = 0. Then invoking the
previous fact gives ∑

n≤x

f(n)√
n

= O(1).

However, we showed that under these hypotheses, f(n) ≥ 1 when n is a square.
So we have ∑

n≤x

f(n)√
n
≥
∑
m≤
√
x

1

m
,

which as x→∞ is much larger than O(1). Contradiction. So L(1, χ) 6= 0.

This completes Dirichlet’s theorem in the most uncermonious of ways.

Exercise (2.4.6). Show that for a non-trivial, real character χ, we have∑
n>x

χ(n)

n
= O

(
1

x

)
.
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Proof. Recall from (2.1.5) that we may write

L(1, χ) =

∫ ∞
1

s(t)

t2
dt, where s(t) =

∑
n≤t

χ(n).

Then, using our familiar bound |s(t)| ≤ q, we have∑
n>x

χ(n)

n
= L(1, χ)−

x∑
n=1

χ(n)

n

=

∫ ∞
1

s(t)

t2
dt−

x∑
n=1

χ(n)

n

≤
∫ ∞

1

q

t2
dt+

1

x

� 1

x
.

Exercise (2.4.7). Let χ be a non-trivial, real character, and let an =
∑
d|n

χ(d).

Show that ∑
n≤x

an = x+ L(1, χ) +O(
√
x).

Proof. Observe that an = χ(n) ? 1. This suggests that we use Dirichlet’s hy-
perbola method, taking f(n) = an, g(d) = χ(d), h(d) = 1, and y =

√
x. Doing

this, we have∑
n≤x

an =
∑
d≤
√
x

χ(d)
[x
d

]
+
∑
d≤
√
x

G
(x
d

)
−G(

√
x)[
√
x].

Recall our convenient bound, |G(x)| ≤ q. Thus, using this and the result from
the previous exercise, we may write∑

n≤x

an ≤ x
∑
d≤
√
x

χ(d)

d
+
∑
d≤
√
x

q + q[
√
x]

= x
∑
d≤
√
x

χ(d)

d
+O(

√
x)

= x

(
L(1, χ) +O

(
1√
x

))
+O(

√
x)

= xL(1, χ) +O(
√
x).

Exercise (2.4.8). Use the previous exercise to construct an alternate proof that
L(1, χ) 6= 0 for any real, non-trivial character χ.
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Proof. As before, to reach a contradiction, assume L(1, χ) = 0. Then from the
previous exercise,

F (x) =
∑
n≤x

an = O(
√
x).

Consider the Dirichlet series, D(an, s). Recall the result from (2.1.5), namely
that for F (x) = O(x1/2), we have that

D(an, s) = s

∫ ∞
1

F (t)

ts+1
dt,

which converges whenever Re(s) > 1/2. Note also that

D(an, s) = L(s, χ)L(s, 1) = L(s, χ)ζ(s).

On the RHS, we know that L(s, χ) is defined for Re(s) > 0, and we showed
in (2.1.6) that ζ(s) has meromorphic continuation to Re(s) > 0. So write
s = 1/2 + ε for some 0 < ε < 1/2. Then

lim
ε→0+

D(an, s) = lim
ε→0+

L(1/2 + ε, χ)ζ(1/2 + ε) = L(1/2, χ)ζ(1/2) ∈ C.

But from (2.4.3), we also have that

D(an, s) =

∞∑
m=1

am
m1/2+ε

≥
∞∑
m=1

1

m1+2ε
= ζ(1 + 2ε),

and lim
ε→0+

ζ(1 + 2ε) = ζ(1) =∞. Contradiction. So L(1, χ) 6= 0.

18 February 2013

Chapter 3: Prime Number Theorem

Definition.
π(x) = the number of {p < 1 | p is prime }

Prime Number Theorem (1896)

π(x) ∼ x

log(x)
+O(x

1
2 +ε)
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1 3.1. Chebysev’s Theorem

Observation: (
2n

n

)
=

(2n)(2n− 1)...(n+ 1)

n(n− 1)...2.1

is divisible by all primes n ≤ p ≤ 2n.

Fact 3.1.1

Letting θ(n) =
∑
p≤n

log(p).

Then θ(n) ≤ 4 log(2)n.

Proof. Note ∑
n<p≤2n

log(p) ≤
∑
p|(2n

n )

log(p) ≤ log

(
2n

n

)

(
2n

n

)
≤

2n∑
j=0

(
2n

j

)
= (1 + 1)2n = 22n

θ(2n)− θ(n) ≤ log(

(
2n

n

)
) ≤ 2n log(2)

⇒ θ(2r+1) = θ(2r) ≤ 2r+1 log(2)

So

θ(2m+1) = θ(2m+1)− θ(20)

=

m∑
r=0

[θ(2r+1)− θ(2r)]

≤
n∑
r=0

2r+1 log(2) = 2 log(2)

m∑
r=0

2r

= 2 log(2)(2m+1 − 1)

So, for 2m ≤ n ≤ 2m+1

θ(m) = θ(2m) + (θ(n))− θ(2m))

= 2m+1 log(2) + (θ(2m+1)− θ(2m))
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≤ 2m+1 log(2) + 2m+1(log(2))

= 2m+2 log(2) = 4 · 2n log(2)

≤ 4 log(2)n

Exercise. Use the previous result to deduce that

π(n) =
∑
p≤n

1 ≤ 4 log 2 · n

log n
.

Proof. Observe that

π(n) =
∑
p≤n

1 =
∑
p≤n

log p

log p
≤ 1

log n

∑
p≤n

log p =
θ(n)

log n
.

So from the previous exercise, we have that

π(n) ≤ 4 log 2 · n

log n
.

Exercise 3.1.2

Show

θ(n) ≤ 2 log(2)n

Exercise. Induct on n to derive the better upper bound

θ(n) ≤ 2 log 2 · n.

Proof. It is quickly confirmed that the claim is true for n = 1, 2, 3, 4, 5. Take
any n > 5 and suppose the claim holds for every integer less than n. If n is
composite, then using the result from (3.1.1) we have

θ(n) = θ(n− 1) ≤ 2(n− 1) log 2 ≤ 2n log 2.

If n is prime, write n = 2m+ 1. In the proof of (3.1.1) we showed

θ(2m+ 1)− θ(m) ≤ log

(
2m+ 1

m

)
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and also (
2m+ 1

m

)
+

(
2m+ 1

m+ 1

)
≤

2m+1∑
j=0

(
2m+ 1

j

)
= 22m+1.

Recalling that the middle binary coefficients of odd powers are equal, this implies(
2m+ 1

m

)
≤ 22m.

Thus, using the induction hypothesis and the previous work, we have

θ(2m+ 1) ≤ log

(
2m+ 1

m

)
+ θ(m)

≤ 2m log 2 + 2m log 2

≤ 2 log 2 · (2m+ 1).

Fact 3.1.3

Let ψ(x) =
∑
pa|x

log(p) =
∑
n≤χ

λ(n). (= θ(x)+ error)

Then

lcm[1, 2, ..., n] = eψ(n)

Proof.

lcm[1, 2, ..., n] =
∏
p≤n

pep

where ep = max1≤m≤n(ordp(m)).

e∗p = [logp(n)] = | log(n)

log(p)
=
∑
pα≤n

1

log(lcm[1, 2, ..., n]) =
∑
p≤n

ep log(p) =
∑
p≤n

(
∑
pα≤n

1) log(p)

= logpα≤n log(p) =
∑
m≤n

λ(m)

Fact 3.1.4

Note that eψ(2n+1)

∫ 1

0

xn(1−x)ndx ∈ N which implies ψ(2n+1) ≥ 2 log(2)n.
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Proof. Note:

I =

∫ 1

0

xn(1− x)ndx

=

n∑
k=0

(
n

k

)
(−1)k

∫ 1

0

xn+kdx

=

n∑
k=0

(
n

k

)
(−1)k

1

n+ k + 1

which is clearly rational.

Recall:

eψ(2n+1) = lcm(1, 2, ..., 2n+ 1)

⇒ eψ(2n+1)I ∈ N

eψ(2n+1)I ≥ 1

eψ(2n+1) ≥ 1

I

Notice x(1−x) is maximized at x =
1

2
, i.e x =

1

2
.

1

2
(1− 1

2
=

1

4
. So the max

value of xn(1− x)n on [0, 1] is
1

22n
.

I <
1

22n

eψ(2n+1) ≥ 1

I
> 22n

⇒ ψ(2n+ 1) > 2 log(2)n

Fact 3.1.5

There is A,B ∈ R>0 such that
AX

log(x)
≤ π(x) ≤ Bx

log(x)
.
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Proof. Recall θ(x) ≤ 2 log(2)x.

ψ(2n+ 1) ≥ 2 log(2)n

⇒ ψ(2n+ 2) ≥ (2n+ 1) log(2)

ψ(x) ≥ log(2)x

So ∑
√
x<p<x

log(p) ≤ 2x log(2)

π(x)− π(
√
x) ≤ 2 log(2)x

π(x) ≤ 4x log(2)

log(x)
+ π(
√
x)

≤ 4x
log(2)

log(x)
+
√
x

π(x) <<
x

log(x)

Prime Counting Functions

20 February 2013

Definitions

1. Π(x) =
∑
p≤x

1

2. Θ(x) =
∑
p≤x

log p

3. Ψ(x) =
∑
n≤x

Λ(n)

Exercise. Show that ψ(x) = θ(x) +O(
√
x log2 x).
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Proof. Notice that

ψ(x) = θ(x) +
∑
pα≤x
α≥2

log(p),

and so it suffices to show that this sum is of order
√
x log2 x. Observe that∑

pα≤x
α≥2

log(p) ≤
∑
pα≤x
α≥2

log x

≤ log x
∑
pα≤x

1

≤ log x
∑
p≤
√
x

∑
α≤ log x

log p

1

≤ log2 x
∑
p≤
√
x

1

≤
√
x log2 x.

Facts

1. Ψ(x) = Θ(x) = O
(√
x log x

)
2. Π(x) = O(

√
x)

3. Θ(x)�
√
x log x

4. Ψ(x)�
√
x log x

5. Ψ(x)� x

Proof. Recall eΨ(x)

∫ 1

0

xn(1−x)ndx ∈ N⇒ eΨ(x) ≤ 1

I
where I is bounded

above so
1

I
≤ 22n ⇒ Ψ(2n+1) ≤ 2n log n� n. Select n such that 2n+3 ≤

x > 2n+ 1, then Ψ(x) ≤ Ψ(2n+ 1)� n ≥ x− 3

2
=

1

2
x− 3

2
� x.
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Note

Θ(x)−Θ(x) =
∑

√
x<p<x

log p

= Θ(x) +O(
√
x log x)

� Ψ(x) +O(
√
x log x)

⇒ log x[Π(x)−Π(
√
x)]

≥
∑

√
x<p<x

log p

� x.

This implies
Π(x) log x� x+O (Π(x) log x)� x

so that we can say Π(x)� x

log x
. Thus, there exist A, B ∈ R>0 such that

Ax

log x
≤ Π(x) ≤ Bx

log x
.

Challenge: Find A, B that work assuming x sufficiently large.

Exercise (3.1.6). Use Euler-Maclauren summation to show

T (x) : =
∑
n≤x

log n = x log x− x+ C +O

(
1

x

)
.

Proof. By Euler-Maclauren summation,

∑
a<n≤b

f(n) =

∫ b

a

f(t)dt+

k∑
r=0

(−1)r+1

(r + 1)!
[f (r)(b)−f (r)(a)]Br+1+

(−1)k

(k + 1)!

∫ b

a

Bk+1(t)f (k+1)(t)dt.

Take a = 1, b = x, f(t) = log t, and k = 1 in Euler-Maclauren summation.
We’ll look at the integral part first. Observe that

1

2

∫ x

1

B2(t)

t2
dt =

1

2

∫ x

1

1/6− {t}+ {t}2

t2
dt

=
1

12

∫ x

1

dt

t2
− 1

2

∫ x

1

t− [t]

t2
dt+

1

2

∫ x

1

{t}2

t2
dt

= −1

2

∫ x

1

dt

t
+ C +O

(
1

x

)
= −1

2
log x+ C +O

(
1

x

)
.

69



So with the result of the summation formula, we have∑
n≤x

log n =

∫ x

1

log tdt+
1

2
log x+

1

12

(
1

x
− 1

)
− 1

2
log x+ C +O

(
1

x

)

= x log x− x+ C +O

(
1

x

)
.

Fact 3.1.7

Show
∑
d≤x

Λ(d)

d
= log x+O(1).

Proof. Recall
∑
d|n

Λ(n) = log n.

T (x) =
∑
n≤x

log n

=
∑
de≤x

Λ(d)

=
∑
d≤x

Λ(d)
[x
d

]
= x

∑
d≤x

Λ(d)

d
+
∑
d≤x

Λ(d)
{x
d

}
.

So, take 1 as an upper bound on the fractional part yielding

T (x) = x
∑
d≤x

Λ(d)

d
+O(Ψ(x)) because

∑
Λ(d) = Ψ(x). This implies:

∑
d≤x

Λ(d)

d
=
T (x)

x
+O(1) (b/c Ψ(x)� x)

= log x+O(1) (by exercise 3.1.6.)

Fact 3.1.8∑
p≤x

1

p
= log log x+O(1).
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Proof. ∑
n≤x

Λ(n)

n
=
∑
p≤x

log p

p
+
∑
pα≤x
a≥2

log p

pα

=
∑
p≤x

log p

p
+
∑
√
x

log p
∑

2≤α≤
log x

log p

1

pα

=
∑
p≤x

log p

p
+O

 ∑
p≤
√
x

log p

(
1

p2

) 1

1− 1

p




=
∑
p≤x

log p

p
+O

 ∑
p≤
√
x

log p

p(p− 1)


=
∑
p≤x

log p

p
+O

(
1

n
2
3

)

=
∑
p≤x

log p

p
+O(1)

⇒
∑
p≤x

log p

p
=
∑
n≤1

Λ(n)

n
+O(1).

By partial summation, we let f(t) =
1

log t
, f ′(t) = − 1

t log2 t
, an =


log p

p
if n = p

0 o/w
So, ∑

p≤x

1

p
=

1

log x
(log x+O(1)) +

∫ x

2

log t+O(1)

t log2 t
dt

= O(1) +

∫ x

2

dt

t log t
+O

(
dt

t log2 t

)
(u = log t)

= O(1) +

∫ log x

log 2

du

u
+O

(∫ log x

log 2

du

u2

)

= log log x+O(1) +O

(
1

log x
+

1

log 2

)
= log log x+O(1).

22 February 2013
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The following theorem, known as Bertrand’s Postulate is a famous result in
number theory. It was first proved by Chebyshev and later by Erdös. The proof
we will follow, however, is Ramanujan’s.

Theorem (3.1.9). There is a prime between n and 2n for n sufficiently large.

Proof. As a preliminary observation, recall that for a monotonic decreasing
sequence tending to 0 - denote it (an) - it is true that

a0 − a1 ≤
∞∑
n=0

(−1)nan.

To begin the proof, note that

T (x) =
∑
n≤x

log x =
∑
de≤x

Λ(d) =
∑
e≤x

ψ
(x
e

)
,

so in particular

T (x)− 2T
(x

2

)
=
∑
e≤x

ψ
(x
e

)
− 2

∑
e≤ x2

ψ
( x

2e

)
=
∑
e≤x

(−1)e−1ψ
(x
e

)
.

So by the observation above and from (3.1.6), we have that

ψ(x)− ψ
(x

2

)
≤ T (x)− 2T

(x
2

)
= x log x− x+O(log x)−

(
x log

x

2
− x+ 2O

(
log

x

2

))
= x log 2 +O(log x).

Rearranging and iterating the same inequality k times, we obtain

ψ(x) ≤ x log 2 +O(log x) + ψ
(x

2

)
= x log 2 +O(log x) +

(x
2

log 2 + ψ
(x

4

)
+O

(
log

x

2

))
= x log 2

(
1 +

1

2

)
+ ψ

(x
4

)
+ 2O(log x)

. . .

= x log 2

k∑
n=0

(
1

2

)n
+ ψ

( x
2k

)
+ kO(log x).

It is important we count the error terms here because our choice of k will depend
on x. In fact, we would like 2k ≥ x, which amounts to choosing

k =

⌈
log x

log 2

⌉
.
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Doing this yields the nice bound

ψ(x) ≤ 2x log 2 +O(log2 x).

Returning to the altenating series involving ψ, write

ψ(x)− ψ
(x

2

)
+ ψ

(x
3

)
≥ T (x)− 2T

(x
2

)
= x log 2 +O(log x).

Therefore we can use the bound deduced above to obtain

ψ(x)− ψ
(x

2

)
≥ x log 2 +O(log x)− ψ

(x
2

)
≥ x log 2 +O(log x)− 2 log 2

3
x+O(log2 x)

=
log 2

3
x+O(log2 x).

At this point, we use our knowledge of the relationship between ψ(x) and θ(x)
to conclude the proof. We now have that

θ(x)− θ
(x

2

)
= ψ(x)− ψ

(x
2

)
+O(

√
x log2 x)

≥ log 2

3
x+O(

√
x log2 x).

Since x grows quicker than
√
x log2 x, the RHS is eventually positive, which

means there is some prime between x and x/2 whenever x is sufficiently large.

Remark. A weekend challenge would be to make this theorem effective. That is,
determine the constant in the O(

√
x log2 x) term in order to find a lower bound

on x. This would involve returning to earlier exercises to establish constants in
the appropriate estimates of θ(x) and ψ(x).

Further Topics in the Theory of Prime Counting
Functions

25 February 2013

Fact (3.1.10). Suppose {an}∞n=1 ⊂ C. let s(x) =
∑
n≤x

an. If lim
x→∞

s(x)

x
= α, then∑

n≤x

an
n

= α log(x) + o(log(x)) as x→∞, i.e.
∑
n≤x

an
n

α log(x).

Proof. By partial summation with f(t) =
1

t
,
∑
n≤x

an
n

=
s(x)

x
+

∫ x

1

s(t)

t2
dt. Note

that lim
x→∞

s(x)

x
= α implies s(x) = αx + E(x) where

E(x)

x
→∞ as x→∞,
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i.e. s(x) = αx+ o(x). Thus

∫ x

1

s(t)

t2
dt =

∫ y

1

s(t)

t2
dt+

∫ x

y

s(t)

t2
dt where we take

y = y(x) such that y(x)→∞ as x→∞ . Then∫ x

y

s(t)

t2
dt =

∫ x

y

αt+ o(t)

t2
dt = α

∫ x

y

dt

t
+ o(

∫ x

y

dt

t
) =

α log(x) +O(log(y)) + o(

∫ x

y

dt

t
) = α log(x) +O(log(y)) + o(log(x)).

Taking log(y) = o(log(x)), e.g. log(y) = log(log(x)) and thus y = log(x). Then∫ x

y

s(t)

t2
dt = α log(x) + o(log(x)).

Note:
s(x)

x
→∞ as x→∞ so there exists M ∈ R>0 such that x > M =⇒

|s(x)

α
− α| < 1 =⇒ |s(x) − α| < x =⇒ s(x) = O(x). So

∫ y

1

s(t)

t2
dt =

O(

∫ y

1

dt

t
) = O(log(y)). Note

s(x)

x
= O(1). Thus

∑
n≤x

an
n

= α log(x) + o(log(x))

provided that log(y) = o(log(x)) where y = y(x)→∞ as x→∞ . Taking y =
log(x) works.

Exercise (3.1.11). Show that ψ(x) ∼ x if and only if π(x) ∼ x/ log x.

Hint: (⇒) Use partial summation on
∑

2≤n≤x

Λ(n)

log(n)
. Note

∑
n≤x

Λ(n)

log(n)
= π(x) +

O(
√
x log(x)). (⇐) Use partial summation on

∑
x≤x

f(n) log(n) where f(n) ={
1 n prime

0 otherwise
.

Proof. For the first direction, keep in mind that by hypothesis we have that
ψ(x) = x+ o(x) and ψ(x)/x = O(1). Consider the sum∑

2≤n≤x

Λ(n)

log n
.

Taking f(t) = 1/ log t and an = Λ(n) yields∑
2≤n≤x

Λ(n)

log n
=
ψ(x)

x
+

∫ x

2

ψ(t)

t log2 t
dt

=
x

log x
+ o

(
x

log x

)
+O

(∫ x

2

dt

log2 t

)
.
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Observe that ∫ x

2

dt

log2 t
=

∫ √x
2

dt

log2 t
+

∫ x

√
x

dt

log2 t

≤
√
x

log2 2
+
x−
√
x

log2 x

= O(
√
x) +O

(
x

log2 x

)
= O

(
x

log2 x

)
.

Therefore, we have∑
2≤n≤x

Λ(n)

log n
=

x

log x
+ o

(
x

log x

)
+O

(
x

log2 x

)
.

But recalling that ψ(x) = θ(x) +O(
√
x log2 x), we also have that∑

2≤n≤x

Λ(n)

log n
=
ψ(x)

log x
= π(x) +O(

√
x log x).

Equating these two expressions, consolidating error terms, and isolating π(x)
gives the result that

π(x) = x/ log x+ o(x/ log x).

For the other direction, we’ll use partial summation on

θ(x) =
∑
n≤x

an log n,

where an is the prime indicator function. Doing this and using the hypothesis
yields

θ(x) =
∑
n≤x

an log n = π(x) log x−
∫ x

1

π(t)

t
dt

= x+ o(x) +O(log x)

= x+ o(x).

Again, we’ll use the approximation θ(x) = ψ(x) + O(
√
x log2 x). Combining

error terms yields ψ(x) = x+ o(x).

Fact (3.1.2). Suppose lim
x→∞

π(x)

x/ log(x)
= α. We already proved that there exist

c1, c2 ∈ R>0 such that lim inf
x→∞

π(x)

x/ log(x)
≥ c1 and lim sup

x→∞

π(x)

x/ log(x)
≤ c2. Then
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∑
p≤x

1

p
= α log(log(x)) + o(log(log(x))), i.e. if α exists, then c1 ≤ α ≤ c2. We

showed that
∑
p≤x

1

x2
log(log(x)).

Corollary. If lim
x→∞

π(x)

x/ log(x)
= α exists, then α = 1.

Proof. By partial summation with an =

{
1 n prime

0 otherwise
,

∑
p≤x

1

p
=

∑
2≤n≤x

an
n

=
π(x)

x
+

∫ x

2

π(t)

t2
dt =

O(
1

log(x)
) +

∫ y

2

π(t)

t2
dt+

∫ x

y

π(t)

t2
dt =

O(
1

log(x)
+ y) +

∫ y

x

αdt

t log(t)
+ o(

∫ y

x

dt

t log(t)
) =

O(
1

log(x)
+ y) + α log(log(x))) +O(log(log(y))) + o(log(log(x))) =

α log(log(x)) + o(log(log(x)))

provided one can choose y = y(x)→∞ as x→∞ such that y = o(log(log(x))).

Taking y =
log(log(x))

log(log(log(x)))
works.

Section 3.2: Nonvanishing of Dirichlet Series on
Re(s) = 1

02/27/13
We could say that there are two ingredients to the proof of the prime number

theorem:

1. The meromorphic continuation of ζ(s) to Re(s) = 1.

2. The nonvanishing of ζ(s) on Re(s) = 1.

The first of these we already have - in fact, we have more than we need. Recall
in (2.1.6) we showed that

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dt,

and so equivalently

(s− 1)ζ(s) = s− s(s− 1)

∫ ∞
1

{x}
xs+1

dt.
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The right-hand side of this second equation is analytic for Re(s) > 0, which
means the expression for ζ(s) derived in (2.1.6) is meromorphic for Re(s) > 0.
Furthermore, we know that it has only one pole - a simple pole at s = 1 with
residue 1.

Some work still needs to be done to obtain the second ingredient listed above.
We’ve aluded to the following fact before when we concluded our discussion on
infinite products, but we’ll make it explicit here.

Fact (3.2.2). If Re(s) > 1, then ζ(s) 6= 0.

Proof. For Re(s) > 1, we can use the Euler product to write

ζ(s) =
∏
p

(1− p−s)−1 =
∏
p

(
1 +

1

ps − 1

)
.

Therefore, to show that ζ(s) is nonzero, it suffices to show that∣∣∣∣∣∑
p

1

ps − 1

∣∣∣∣∣ <∞.
Observe that after setting s = σ + it, we have∣∣∣∣∣∑

p

1

ps − 1

∣∣∣∣∣ ≤∑
p

∣∣∣∣ 1

ps − 1

∣∣∣∣
=
∑
p

1

pσ + 1

≤
∑
n≥1

1

nσ + 1
,

which converges for σ > 1.

Fact (3.2.3). Let s = σ + it and suppose σ > 1. Then

Re(log ζ(s)) =
∑
n≥1

Λ(n)

nσ log n
cos(t log n).

Proof. Observe that for σ > 1 we have

log ζ(s) = −
∑
p

log(1− p−s)

=
∑
p

∑
k≥1

1

kpks

=
∑
k≥1

1

k

∑
p

1

pkσ
p−ikt.
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To combine these two summations, take n = pk and use the von Mangoldt
function to identify the primes. That is, write

log ζ(s) =
∑
n≥1

Λ(n)

nσ log n
n−it

=
∑
n≥1

Λ(n)

nσ log n
(cos(t log n) + i sin(t log n)),

where from here we can pick out the real part.

Fact (3.2.4). For s = σ + it and σ > 0, we have

Re[3 log ζ(σ) + 4 log ζ(σ + it) + log ζ(σ + 2it)] ≥ 0.

Proof. First, recall the double angle formula for cosine

cos 2θ = 2 cos2 θ − 1.

Using the result from (3.2.3), write

Re[3 log ζ(σ) + 4 log ζ(σ + it) + log ζ(σ + 2it)] =

∞∑
n=1

Λ(n)

nσ log n
(3 + 4 cos(t log n) + cos(2t log n))

=

∞∑
n=1

Λ(n)

nσ log n
(3 + 4 cos(t log n) + 2 cos2(t log n)− 1)

= 2

∞∑
n=1

Λ(n)

nσ log n
(1 + cos(t log n))2,

which is certainly greater than 0.

Fact (3.2.5). For s = σ + it and σ > 0, we have

|ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| ≥ 1.

Deduce from this that ζ(s) is nonzero on Re(s) = 1 (except when s = 1).

Proof. Taking the result from (3.2.4) and exponentiating both sides gives the
first claim. To lead to a contradiction, suppose ζ(s) has a zero of order m at
s = 1 + it for some nonzero t. Set c to be the residue of this pole, that is

lim
σ→1+

ζ(σ + it)

(σ − 1)m
= c 6= 0.

Taking the result from (3.2.5) and multiplying both sides by (σ− 1)3−4m yields

|(σ − 1)3ζ3(σ)(σ − 1)−4mζ4(σ + it)ζ(σ + 2it)| ≥ (σ − 1)3−4m,
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where upon taking σ → 1+ we obtain

|1 · c4 · σ(1 + 2it)| ≥ lim
σ→1+

(σ − 1)3−4m.

If this is to be true, then the right-hand side cannot diverge to infinity. So we
must have

3− 4m ≥ 0 ⇒ m = 0,

because m is an integer. Contradiction. Therefore, ζ(s) does not vanish on
Re(s) = 1 except when s = 1.

1 March 2013

Last time:

ζ(σ + it) 6= 0 if we have that σ ≤ 1, t 6= 0

Suppose χ 6= χ2 (χ 6= χ0 is not real)

We can use the same techniques as above to reprove the non-vanishing of
L-series at s = 1 with nonreal nontrivial character (already proved in (2.3.10)).

Exercise. Let χ be a non-real, non-trivial character mod q and write s = σ+it.
If σ > 1, then

logL(σ, χ) =

∞∑
n=1

Λ(n)

nσ log n
(cos(t log n− nθ)− i sin(t log n− nθ))

and

logL(σ, χ2) =

∞∑
n=1

Λ(n)

nσ log n
(cos(t log n− 2nθ)− i sin(t log n− 2nθ))

Proof. From (2.3.2) we have the expression

logL(σ, χ) =
∑
k≥1

1

k

∑
p

χ(p)k

pks

=
∑
k≥1

1

k

∑
p

χ(pk)

pkσ
p−itk.

Setting χ(1) = eiθ, taking n = pk, and using the von Mangoldt function to
identify the primes (just like in 3.2.3) yields

logL(σ, χ) =

∞∑
n=1

Λ(n)

nσ log n
χ(n)n−it

=

∞∑
n=1

Λ(n)

nσ log n
ei(nθ−t logn)

=

∞∑
n=1

Λ(n)

nσ log n
(cos(t log n− nθ)− i sin(t log n− nθ)).
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Furthermore, if χ(1) = eiθ, then χ2(1) = e2iθ and so similarly

logL(σ, χ2) =

∞∑
n=1

Λ(n)

nσ log n
(cos(t log n− 2nθ)− i sin(t log n− 2nθ)).

Exercise. For s = σ + it with σ > 0, use the previous result to deduce that for
a non-real non-trivial character χ,

Re[3 log ζ(σ) + 4 logL(σ, χ) + logL(σ, χ2)] ≥ 0.

Proof. As before, we use the double angle formula

cos 2x = 2 cos2 x− 1.

From the previous exercise, we have that

Re[3 log ζ(σ) + 4 logL(σ, χ) + logL(σ, χ2)] =

∞∑
n=1

Λ(n)

nσ log n
(3 + 4 cos (−nθ) + cos (−2nθ))

=

∞∑
n=1

Λ(n)

nσ log n
(3 + 4 cos (−nθ) + 2 cos2 (−nθ)− 1)

= 2

∞∑
n=1

Λ(n)

nσ log n
(1 + cos (−nθ))2,

which is certainly greater than 0.

Corollary. As an immediate corollary, we have that for a non-real, non-trivial
character χ,

|ζ3(σ)L4(σ, χ)L(σ, χ2)| ≥ 1.

Proof. Exponentiate the result from the previous exercise.

Exercise. Show that for non-real, non-trivial χ, L(1, χ) is nonzero.

Proof. Suppose L(1, χ) has a zero of order m and residue c at some t 6= 0. That
is,

lim
σ→1+

L(σ, χ)

(σ − 1)m
= c 6= 0.

Taking the result from the previous exercise and multiplying both sides by
(σ − 1)3−4m yields

|(σ − 1)3ζ3(σ)L4(σ, χ)(σ − 1)−4mL(σ, χ2)| ≥ (σ − 1)3−4m.
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Upon taking σ → 1+ we obtain

|1 · c4 · L(1, χ2)| ≥ lim
σ→1+

(σ − 1)3−4m.

From the corollary to (2.3.4), L(1, χ2) converges, and so the right-hand side
must also converge. Therefore we have

3− 4m ≥ 0 ⇒ m = 0,

since m is an integer. Contradiction. So L(1, χ) is nonzero for non-real, non-
trivial χ.

Corollary. L(σ + it, χ) 6= 0 if σ ≤ 1 and t ∈ R and χ 6= χ2.

Fact 3.2.6:

The function
−ζ(s)

ζ(s)
has meromorphic continuity to Re(s) ≤ 1 with only a

simple pole at s = 1 with residue 1.

Proof.
Recall: ζ(s) and also ζ(s) have meromorphic continuity to Re(s) > 0 with

poles only at s = 1.

Recall:

ζ ′(s)

ζ(s)
=
∑
n≤1

Λ(n)

ns

Also, ζ(s) 6= 0 if Re(s) ≤ 1.
−ζ(s)

ζ(s)
has meromorphic continuity to Re(s) ≤ 1 with a pole only at s = 1

at order 1.

Recall (3.2.1)

(s− 1)ζ(s) = s(1− (s− 1)

∫ ∞
1

{x}
xs+1

dx

Note: f(s) is analytic for Re(s) > 0.

⇒ (s− 1)ζ(s) = sf(s) for 1 ≤ Re(s)

⇒ ζ(s) + (s− 1)ζ ′(s) = f(s) + sf ′(s)

⇒ 1 + (s− 1)
ζ ′(s)

ζ(s)
=
f(s)

ζ(s)
+
sf ′(s)

ζ(s)
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⇒ (s− 1)
ζ ′(s)

ζ(s)
= −1 +

f(s)

ζ(s)
+
sf ′(s)

ζ(s)

lim
s→1+

[(s− 1)
ζ ′(s)

ζ(s)
] = −1

So
−ζ ′(s)
ζ(s)

has a simple pole at s = 1 of residue 1.

Exercise (3.2.7). Show that

sin (n+ 1
2 )θ

2 sin θ
2

=
1

2
+ cos θ + cos 2θ + . . .+ cosnθ.

Proof. Starting with the right-hand side, observe that this expression is the real
part of the quantity

−1

2
+ (1 + eiθ + ei2θ + . . .+ einθ),

which we can rewrite using a finite geometric sum as

−1

2
+
ei(n+1)θ − 1

eiθ − 1
. (3)

Observe that multiplying the denominator by e−iθ/2 yields

eiθ/2 − e−iθ/2 = cos
θ

2
+ i sin

θ

2
− cos

θ

2
+ i sin

θ

2
= 2i sin

θ

2
,

so (1) can be equivalently expressed as

−1

2
+

(ei(n+1)θ − 1)e−iθ/2

2i sin θ
2

= −1

2
+
ei(n+1/2)θ − e−iθ/2

2i sin θ
2

= −1

2
+

cos (n+ 1
2 )θ + i sin (n+ 1

2 )θ − cos θ2 + i sin θ
2

2i sin θ
2

= −1

2
+
i cos (n+ 1

2 )θ + sin (n+ 1
2 )θ − i cos θ2 + sin θ

2

2 sin θ
2

=
i cos (n+ 1

2 )θ + sin (n+ 1
2 )θ − i cos θ2

2 sin θ
2

.

At this point, all that remains is to pick out the real part of this quantity and
confirm that this matches the left-hand side of the claim.
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Ikehera Weiner Theorem

Review of Fourier Analysis

Definition. The Schwartz space of rapidly decreasing function is

S(R) = {f ∈ C∞(R)| lim
|x|→∞

xnf (n)(x) = 0,∀m,n ∈ R}

Example: fm(t) = e−mt
2

∈ S(R)(m > 0).

Definition. For f ∈ S(R) we define the Fourier (inversion) of f by

f̂(x) :=
1√
2π

∫ ∞
−∞

f(t)eitxdt

Fact: f(x) =
1√
2π

∫ ∞
−∞

f̂(t)eitx.

Proof. exercise

Corollary. Note: f̂(x− y) =
1√
2π

∫ ∞
−∞

f(t)e−itx+itydt.

f̂(x− y) and f(t)eity are Fourier inversions of each other.

Parserol’s Identity

∫ ∞
−∞

f(x)q(x)dx =

∫ ∞
−∞

f̂(t)ĝ(t)dt.

Note: The formulas can be extended to L2(R).

Riemann-Lebesgue Lemma

lim
λ→∞

[

∫ ∞
−∞

f(t)eixtdt] = 0

for every absolute convergent function f .

Fejer Kernel

Kλ(x) =
sin2(λx

λx2

where Kλ = 2
√

2π(1− |x|
2λ

if |x| ≤ 2λ, and 0 otherwise.

4 March 2013
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Ikehara-Wiener Theorem

Let F (s) =
∑
n≥1

bn
ns

be a Dirichlet series with bn ∈ R>0 and absolute convergence

for Re(s) ≥ 1. Suppose also that F (s) can be meromorphically continued to
Re(s) ≥ 1 with only a simple pole at s = 1 of residue R≥ 0.

Then, B(x) =
∑
n≤x

bn = Rx+ o(x) as x→∞ .

Proof. Without loss of generality, we may assume R> 0 because if R=0, F (s)
is analytic on Re(s) ≥ 1 and we may replace F (s) by F (s) + ζ(s) where F (s) =∑
n≥1

1 + bn
ns

and this satisfies the hypothesis with R=1. Applying the theorem,

then yields
∑
n≤x

1 + bn
ns

= x + o(x) =⇒
∑
n≤x

bn = o(x). If R 6= 0, 1, then replace

F (s) by
∑
n≤x

bn
R

ns
= G(s). Then, G satisfies the theorem by R=1 and the theorem

gives
1

R

∑
n≤x

bn = x+ o(x) =⇒
∑
n≤x

bn = Rx+ o(x).

So, we assume R = 1. Then, by partial summation, letting f(t) =
1

ts
,

F (s) = lim
N→∞

(
N∑
n=1

bn
ns

)
lim
N→∞

(
B(N)

Ns
+ s

∫ N

1

B(t)

ts+1
dt

)

Since F (s) is analytic for Re(s) > 1,
B(N)

Ns
= O(1) as N→∞ for Re(s) > 1.

In other words, B(N) = O(NRe(s)>1) for any s for Re(s) > 1.
That is, B(N) = O(N1+δ) for all δ > 0.

So, for any s with Re(s) > 1 + δ > 0,
B(N)

Ns
→ 0 as N→∞ .

So, for Re(s) > 1, F (s) = s

∫ ∞
1

B(t)

ts+1
dt = s

∫ ∞
1

B(t)

ts
d

ts
. Setting t = eu =⇒

u = ln(t) so dt = eudu =⇒ du =
dt

t
,

F (s) =

∫ ∞
0

B (eu)

esu
du

F (s)

s
=

∫ ∞
0

B (eu) e−sudu

Note: ∫ ∞
0

e−u(s−1)du =
−1

s− 1
e−u(s−1)

∣∣∣∣∞u=0 =
1

s− 1
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Write s = 1 + δ + ix where δ > 0. Then,

F (s)

s
=
F (1 + δ + ix)

1 + δ + ix

=

∫ ∞
0

B (eu) e−u(1+δ+ix)du∫ ∞
0

B (eu) e−ue−uδe−uxidu

So,
F (s)

s
− 1

s− 1
=

∫ ∞
0

[
B (eu) e−u − 1

]
e−uδe−iuxdu.

Let g(u) = B (eu) e−u

hδ(x) =
F (1 + δ + ix)

1 + δ + ix
− 1

δ + ix
=⇒ h(x) =

F (1 + ix)

1 + ix
− 1

1 + ix
. Where h(t)

just has δ = 0.

We have that
1

δ + ix
is analytic at s = 1 and

1

1 + ix
is well defined for all x ∈ R

as well as continuous and infinitely differentiable.
Aside: we want g(u)→ 1 as u→∞ .

Exercise

Both of these functions are square integrable because B(x) �
∑
n≥1

bn

(x
n

)c
for

all c > 1.

Continuing with the proof, then, notice that
[√

2π ̂(g(u)− 1)euδ
]

(t) = hδ(t)

so that, using Parseval’s formula, we get

√
2π

∫ ∞
−∞

(g(u)− 1)e−uδkλ(u)du =

∫ ∞
−∞

hδ(x)k̂λ(x)dx.

Also, using a property of translation with Fourier transform,

√
2π

∫ ∞
−∞

(g(u)− 1)e−uδkλ(u− v)du =

∫ ∞
−∞

hδ(x)k̂λ(x)e−ixvdx.

Recall: Since k̂λ(x) has compact support [−2λ, 2λ], the limits as δ → 0 of the
right hand sides (of our above equations) exist, and thus the same is true for
the left hand side(s). Thus,

√
2π

∫ ∞
−∞

(g(u)− 1)kλ(u− v)du =

∫ ∞
−∞

h(x)k̂λ(x)e−ixvdx.

And by the Riemann-Lebesgue Lemma, we have that the RHS → 0 as v→∞ .
After moving the constant to the other side, this argument leads to the

following statement about the left-hand side:

lim
δ→0

lim
v→∞

∫ ∞
−∞

(g(u)− 1)kλ(u− v)du = 0. (4)
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Exercise. Show that∫ ∞
−∞

Kλ(x)dx =

∫ ∞
−∞

sin2 λx

λx2
dx = π.

Proof. Set

f(t) =

{
1 if |t| ≤ λ
0 otherwise.

Of interest is the Fourier transform of f :

f̂(t) =
1√
2π

∫ ∞
−∞

f(t)e−itxdx

=
1√
2π

∫ λ

−λ
e−itxdx

=
1√
2π

(
− 1

it
e−itx

∣∣∣λ
−λ

)
=

1√
2π
· 1

it

(
eitλ − e−itλ

)
=

1√
2π
· 1

it
(2i sin tλ)

=
2 sin tλ

t
√

2π
.

On one side of Parseval’s identity, we have that∫ ∞
−∞

f2(t)dt =

∫ λ

−λ
1dt = 2λ

so this means that

2λ =

∫ ∞
−∞

f̂2(t)dt =

∫ ∞
−∞

2 sin2 tλ

t2π
dt.

Rearranging this final equation gives the desired result.

Using this result, rewrite (1) as

lim
v→∞

∫ ∞
−∞

g(u)kλ(u− v)du = π, (5)

where the condition that δ → 0 will remain unstated for the remainder of the
proof. Consider the change of variables u = v + α/λ so that du = dα/λ.
Rewriting (2) in this fashion we see that

π = lim
v→∞

∫ ∞
−∞

g
(
v +

α

λ

)
kλ

(α
λ

) dα
λ

= lim
v→∞

∫ ∞
−∞

g
(
v +

α

λ

) sin2 α

α2
dα. (6)
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We now begin building an upper bound. Recall that B(x) is monotonic
increasing, so for u2 ≥ u1 we have that B(eu2) ≥ B(eu1) and in particular,
using our function g(u) = B(eu)e−u that

g(u2) ≥ g(u1)eu1−u2 .

So for |α| ≤
√
λ, certainly α

λ ≥ −
1√
λ

and thus

g
(
v +

α

λ

)
≥ g

(
v − 1√

λ

)
e
−1√
λ

+α
λ

≥ g
(
v − 1√

λ

)
e
−2√
λ .

Returning to (3), we now see the power of the most recent change in variables.
We now have a bound on part of the integrand that does not depend on α. In
particular, write

π = lim
v→∞

∫ ∞
−∞

g
(
v +

α

λ

) sin2 α

α2
dα

≥ lim
v→∞

∫ √λ
−
√
λ

g
(
v +

α

λ

) sin2 α

α2
dα

≥ lim
v→∞

sup g

(
v − 1√

λ

)
e
−2√
λ

∫ √λ
−
√
λ

sin2 α

α2
dα.

Upon setting w = v − 1√
λ

we arrive at

lim
w→∞

sup g(w) ≤ πe
2√
λ∫√λ

−
√
λ

sin2 α
α2 dα

. (7)

To simplify the integral in this expression, observe that the integrand is even
and so

π =

∫ ∞
−∞

sin2 α

α2
dα =

∫ √λ
−
√
λ

sin2 α

α2
dα+ 2

∫ ∞
√
λ

sin2 α

α2
dα

≤
∫ √λ
−
√
λ

sin2 α

α2
dα+ 2

∫ ∞
√
λ

1

α2
dα

=

∫ √λ
−
√
λ

sin2 α

α2
dα+O

(
1√
λ

)
.

Therefore, rewriting (4) we have

lim
w→∞

sup g(w) ≤ πe
2√
λ

π +O
(

1√
λ

)
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and driving the arbitrary λ→∞ yields

lim
w→∞

sup g(w) ≤ 1.

It remains to be shown that the limit of the infimums is bounded below
by 1, but the strategy is very similar to the one used for the supremums. In
particular, recall that for u2 ≥ u1 we had that g(u2) ≥ g(u1)eu1−u2 , but now
we’re interested in the equivalent statement

g(u1) ≤ g(u2)eu2−u1 .

Now, for |α| ≤
√
λ we have that α

λ ≤
1√
λ

and thus

g
(
v +

α

λ

)
≤ g

(
v +

1√
λ

)
e

1√
λ
− α√

λ

≤ g
(
v +

1√
λ

)
e

2√
λ .

Returning again to (3), use this new bound to write

π = lim
v→∞

∫ ∞
−∞

g
(
v +

α

λ

) sin2 α

α2
dα

≤ lim
v→∞

inf g

(
v +

1√
λ

)
e

2√
λ

∫ ∞
−∞

sin2 α

α2
dα

or more appropriately

π +O

(
1√
λ

)
≤ lim
v→∞

inf g

(
v +

1√
λ

)
e

2√
λ

∫ √λ
−
√
λ

sin2 α

α2
dα

so that setting w = v + 1√
λ

, rearranging, and then driving λ → ∞ we discover

that

lim
w→∞

inf g(w) ≥

(
π +O

(
1√
λ

))
e
− 2√

λ∫∞
−∞

sin2 α
α2 dα

=

(
π +O

(
1√
λ

))
e
− 2√

λ(
π +O

(
1√
λ

)) = 1.

This completes the proof. We’ve shown now that lim
u→∞

g(u) = 1 and so

lim
t→∞

B(t) = t. Equivalently,

B(t) = t+ o(t).

Corollary (Prime Number Theorem). As an immediate corollary,

π(x) ∼ x/ log x

.
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Proof. The function−ζ ′(s)/ζ(s) = D(Λ, s) satisfies the conditions of the Ikehara-
Wiener Theorem with residue 1, so we have that

D(Λ, s) = x+ o(x).

In particular then,

lim
x→∞

ψ(x) = lim
x→∞

∑
n≤x

Λ(n) = x

and so by (3.1.11) we conclude that π(x) ∼ x/ log x.

The next couple results extend the IWT to other contexts. In particular,
what if we have some negative coefficients in our sequence, or what if our se-
quence consists of complex numbers?

Fact (3.3.3). Suppose f(s) =
∑∞
n=1 an/n

s, with real an and f(s) absolutely
convergent for Re(s) > 1. If f(s) has meromorphic continuation to Re(s) ≥ 1
with at worst a simple pole at s = 1 of residue Rf , and if there is some real
sequence bn with |an| ≤ bn, where the function F (s) =

∑∞
n=1 bn/n

s satisfies the
hypotheses of the IWT with residue RF , then the IWT holds for f(s). That is

A(x) :=
∑
n≤x

an = Rfx+ o(x).

Proof. Consider the function G(s) := F (s)− f(s), which has positive real coef-
ficients. G(s) satisfies the hypotheses of the IWT with residue RF −Rf and so
we have that ∑

n≤x

(bn − an) = (RF −Rf )x+ o(x).

By assumption, F (s) also satisfies the conditions of the IWT with residue RF ,
so we also have that ∑

n≤x

bn = RFx+ o(x).

Subtracting the first equation from the second gives the result.

Fact (3.3.4). The previous fact also holds if an is a complex sequence.

13 March 2013

Fact: Let q ∈ N and define ψ(χ, q, a) =
∑

n<χ,n≡a (mod q)

Λ(n).

Then ψ(χ, q, a) ∼ χ

ϕ(q)
provided (a, q) = 1.

Proof.

Consider f(s) =
1

ϕ(q)

∑
χ∈Ẑ/qZ

χ(a)(
−L′(s, χ)

L(s, χ)
).

Observations:
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• L(s, χ) =
∏
p

(1− χ(p)

ps
)−1.

⇒ logL(s, χ) =
∑
p

log(1− χ(p)

ps
) =

∑
p

∞∑
k=1

χ(p)k

kpks

=

∞∑
n=1

χ(n)Λ(n)

log(n)ns

•

⇒ L′(s, χ)

L(s, χ)
=

d

ds
log(L(s, χ)) = −

∞∑
n=1

χ(n)Λ(n)

ns

•

f(s) =
−1

ϕ(a)

∑
χ (mod q)

χ(a)

∞∑
n=1

χ(n)Λ(n)

ns

=

∞∑
n=1

Λ(n)

ns
1

ϕ(q)

∑
χ (mod q)

χ(na−1)

=

∞∑
n=1,n≡a (q)

Λ(n)

ns

• Recall L(s, χ) is analytic for Re(s) > 0 if χ 6= χ0, and if χ = χ0, L(s, χ0) is
analytic for Re(s) > 1 and has meromorphic continuation to Re(s) > 0 with a
simple pole at s = 1.

L(s, χ0) =
∏
p

(1− χ0(p)

ps
)−1 =

∏
p 6|q

(1− 1

ps
)−1

= ζ(s)
∏
p|q

(1− 1

ps
)

Re(L(s, χ), 1) =
ϕ(q)

q

Also L(s, χ) 6= 0 for Re(s) ≥ 1.

So f(s) has meromorphic continuation to Re(s) ≥ 1 with a simple pole at s = 1.

Recall: h(s) = (s− 1)L(s, χ0) is analytic for Re(s) > 0.

⇒ h′(s)

h(s)
=

1

s− 1
+

L′(s, χ0)

L(s, chi0)
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⇒ −L
′(s, χ0)

L(s, χ0)
=

1

s− 1
− h′(s)

h(s)

So, Res=1(
−L′(s, χ)

L(s, χ)
) = 1.

⇒ Res=1(f(s)) = Res=1(
1

ϕ(q)

∑
χ (mod q)

χ(a)(
−L′(s, χ)

L(s, χ)
))

= Res=1(
−L′(s, χ0)

ϕ(q)L(s, chi0)
) =

1

ϕ(q)

Applying I.W.T
∑

n≤χ,n≡q (mod q)

Λ(n) =
χ

ϕ(q)
+ o(χ).

∑
n≡a (mod q)

fracΛ(n)
χ

ϕ(q)
→ 1⇔

∏
(χ, q, a) ∼ χ

ϕ(q) log x)

Exercise. As an immediately corollary, use this result to prove Dirichlet’s the-
orem. That is, show that

π(x, q, a) =
∑
p≤x
p≡a(q)

1 ∼ x

φ(q) log x
.

Proof. Supposing ψ(x, q, a) ∼ x/φ(q), consider the sum∑
n≤x
n≡a(q)

Λ(n)

log n
.

Taking f(t) = 1/ log t and using partial summation yields∑
n≤x
n≡a(q)

Λ(n)

log n
=
ψ(x, q, a)

log x
+

∫ x

2

ψ(x, q, a)

t log2 t
dt

=
x

φ(q) log x
+ o

(
x

φ(q) log x

)
+O

(∫ x

2

dt

t log2 t

)
,

whereby using the approximation of this integeral computed in (3.1.11) allows
us to write

=
x

φ(q) log x
+ o

(
x

φ(q) log x

)
+O

(
x

log2 x

)
=

x

φ(q) log x
+ o

(
x

φ(q) log x

)
.

Seeing as this sum is precisely π(x, q, a), we have our result.
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The next two results generalize the Ikehara-Wiener theorem to functions
that have meromorphic continuation to any positive real number c.

Exercise (3.3.6). Suppose F (s) =
∑
n≥1 bn/n

s is a Dirichlet series with positive
real coefficients, which is convergent for Re(s) > c for some real number c.
Suppose further that F (s) has meromorphic continuation to Re(s) ≥ c, with at
worst a simple pole at s = c of residue R. Then

B(x) :=
∑
n≤x

bn =
R

c
xc + o(xc).

Proof. Consider the function

G(s) = F (s+ c− 1) =
∑
n≥1

bn
nc−1

n−s,

which shifts F along the real line so that G satisfies now the conditions for the
Ikehara-Wiener conjecture with residue R. That is,

D(x) :=
∑
n≤x

bn
nc−1

= Rx+ o(x).

Now observe that we can write

B(x) =
∑
n≤x

bn
nc−1

nc−1,

and so taking f(t) = tc−1 and using partial summation we obtain

B(x) = D(x)xc−1 −
∫ x

1

(c− 1)D(t)tc−2dt

= Rxc + o(xc)− (c− 1)

∫ x

1

Rtc−1dt+ o

(∫ x

1

(c− 1)tc−1dt

)
= Rxc − (c− 1)

Rxc

c
+ o(xc)

=
Rxc

c
+ o(xc).

Exercise (3.3.7). Suppose f(s) =
∑∞
n=1 an/n

s is a Dirichlet series with com-
plex coefficients and is absolutely convergent for Re(s) > c. If f(s) has mero-
morphic continuation to Re(s) ≥ c with at worst a simple pole at s = c of residue
R, and furthermore, if there is a function g(s) =

∑∞
n=1 bn/n

s that satisfies the
hypotheses in (3.3.6) with the added property that |an| ≤ bn, then

A(x) :=
∑
n≤x

an =
R

c
xc + o(xc).
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Exercise (3.3.9). Let cn ≥ 0 and suppose

c(x) :=
∑
n≤x

cn = Ax+ o(x).

Use partial summation to show that∑
n≤x

cn
n

= A log x+ o(log x).

Proof. Take f(t) = 1/t and use partial summation to yield∑
n≤x

cn
n

=
c(x)

x
+

∫ x

1

c(t)

t2
dt

= A+

∫ x

1

A

t
dt+ o

(∫ x

1

dt

t
dt

)
= A+A log x+ o(log x)

= A log x+ o(log x).

Section 4.1: Basic Integrals

25 March 2013

Idea
We are going to relate the behavior of

∑
n≤x

an as n→∞ to f(s) =
∑
n≤1

an
ns
.

Typically, we will compute

∮
Re(s)=c

f(s)ds = lim
N→∞

∫ N

−N
f(c+ it)dt.

We will now introduce some notation for ease: Re(s) = c will be written as (c).

Tool
Cauchy’s Theorem relating the value of a line integral to the residue of the poles
of the function (if any).

Section 4.1: Basic Integrals
Definition
Define

δ(x) =


0 if 0 < x < 1
1

2
if x = 1

1 if x > 1.
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Fact

δ(x) =
1

2πi

∮
(c)

xs

s
ds.
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Theorem 4.1.4

Put Ic(x;R) =
1

2πi

∫ c+iR

c−iR

xs

s
ds.

Notice that as R→∞, this is the same as Re(s) = c.
Then, for x > 0, c > 0, R > 0, we have that

|Ic(x;R)− δ(x)| <

x
cmin

{
1,

1

R| log x|

}
if x 6= 1

c

R
if x = 1.

Proof. Case 1: 0 < x < 1

Consider the contour, Ku for u > c. Since
xs

s
has only a simple pole at s = 0,

1

2πi

∮
Ku

xs

s
ds = 0 = δ(x)

so that

|δ(x)− Ic(x;R)| =

=
1

2πi

[∮ u+iR

c+iR

xs

s
ds−

∮ u+iR

u−iR

xs

s
ds−

∮ u−iR

c−iR

xs

s
ds

]

≤

∣∣∣∣∣ 1

2πi

∮ u+iR

c+iR

xs

s
ds

∣∣∣∣∣+

∣∣∣∣∣ 1

2πi

∮ u+iR

u−iR

xs

s
ds

∣∣∣∣∣+

∣∣∣∣∣ 1

2πi

∮ u−iR

c−iR

xs

s
ds

∣∣∣∣∣
Now, our aim is to estimate these terms.
We have ∣∣∣∣∣ 1

2πi

∫ u+iR

c+iR

xs

s
ds

∣∣∣∣∣ s=w+iR
=

∣∣∣∣ 1

2πi

∫ u

c

xw+iR

w + iR
dw

∣∣∣∣
≤ 1

2π

∫ u

c

xw

|w + iR|
dw

≤ 1

2π

∫ u

c

xw

R
dw

=
1

2πR

∫ u

c

exp(| log (x)|w)dw

=
1

2πR

∣∣∣∣[ 1

| log (x)|
(xu − xc)

]∣∣∣∣
≤ xc

2πR| log (x)|
.

Similarly, we can show that

∣∣∣∣∣ 1

2πi

∫ u−iR

c−iR

xs

s
ds

∣∣∣∣∣ ≤ xc

2πR| log (x)|
.
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Now, let’s take care of the third integral. In particular, we have this estimate:∣∣∣∣∣ 1

2πi

∫ u+iR

u−iR

xs

s
ds

∣∣∣∣∣ s=w+iR
=

∣∣∣∣∣ i2πi

∫ R

−R

xu+iw

u+ iw
dw

∣∣∣∣∣
<

1

2π

∫ R

−R

xu

|u|
dw

=
xu2R

2π|u|

=
xuR

π|u|
→ 0 as u→∞ b/c 0 < x < 1.

So, we can select u sufficiently large so that the integral becomes as small as
required, i.e. ∣∣∣∣∣ 1

2πi

∫ c+iR

c−iR

xs

s
ds

∣∣∣∣∣ ≤ xc

R log (x)
.

So, we have for this case:

|Ic(x;R)− δ(x)| = |Ic(x;R)| ≤ xc

R log (x)
.

All that remains to be shown is that the integral is bounded by xc.

Consider the circle centered at 0 with radius
√
c2 +R2. Let ζR be the arc

running from c− iR to c+ iR (Notice this is the same as I). So, we can bound
our expression: ∣∣∣∣∣ 1

2πi

∫ c+iR

c−iR

xs

s
ds

∣∣∣∣∣ =

∣∣∣∣ 1

2πi

∫
ζR

xs

s
ds

∣∣∣∣
≤ 1

2π

∫
ζR

xc√
c2 +R2

ds

=
xc

2π
√
c2 +R2

∫
ζR

ds

=
xc

2π
√
c2 +R2

(θ
√
c2 +R2)

≤ xc

2
< xc.
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Now suppose x = 1. Using the substitution s = c+ it, ds = idt, we compute

Ic(1, R) =
1

2πi

∫ c+iR

c−iR

ds

s

=
1

2π

∫ R

−R

dt

c+ it

=
1

2π

∫ R

−R

c− it
c2 + t2

dt

=
1

2π

∫ R

−R

c

c2 + t2
dt− i

2π

∫ R

−R

t

c2 + t2
dt.

Notice that the first integrand is even and the second integrand is odd, which
makes the remaining calculation much easier. Now write

Ic(1, R) =
c

π

∫ R

0

dt

c2 + t2

=
1

cπ

∫ R

0

dt

1 + (t/c)2

=
1

π
arctan(t/c)

∣∣∣t=R
t=0

=
1

π
arctan(R/c).

In particular, as R→∞, we have that Ic(1, R)→ 1
π ·

π
2 = 1

2 = δ(1). Therefore,
we can write

|Ic(1, R)− δ(1)| = 1

cπ

∫ ∞
R

dt

1 + (t/c)2

≤ 1

cπ

∫ ∞
R

dt

(t/c)2

=
c

πt

∣∣∣t=∞
t=R

< c/R.

Finally, suppose x > 1. This case proceeds almost identically to the first
case. For u > c, consider the rectangular contour Su with diagonal vertices
−u− iR and c+ iR and a counterclockwise orientation. By Cauchy’s theorem,

1

2πi

∮
Su

xs

s
ds = 1 = δ(x).

Recognizing that Ic(x,R) is the right vertical dimension of this contour, we can
use the triangle inequality to write

|Ic(x,R)−δ(x)| ≤ 1

2π

∣∣∣∣∣
∫ c+iR

−u−iR

xs

s
ds

∣∣∣∣∣+ 1

2π

∣∣∣∣∣
∫ −u−iR
c−iR

xs

s
ds

∣∣∣∣∣+ 1

2π

∣∣∣∣∣
∫ −u+iR

−u−iR

xs

s
ds

∣∣∣∣∣ .
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As before, we bound these individual pieces. For the first, set s = w + iR and
write

1

2π

∣∣∣∣∣
∫ c+iR

−u+iR

xs

s
ds

∣∣∣∣∣ =
1

2π

∣∣∣∣∫ c

−u

xw+iR

w + iR
dw

∣∣∣∣
≤ 1

2π

∫ c

−u

xw

R
dw

=
1

2πR
· x

w

log x

∣∣∣w=c

w=−u

≤ xc

2πR log x
(because x > 1).

Similarly, the other horizontal piece follows the same bound:

1

2π

∣∣∣∣∣
∫ −u−iR
c−iR

xs

s
ds

∣∣∣∣∣ ≤ xc

2πR log x
.

For the final piece, observe that upon setting s = −u+ it, ds = idt, we discover

1

2π

∣∣∣∣∣
∫ −u+iR

−u−iR

xs

s
ds

∣∣∣∣∣ =
1

2π

∣∣∣∣∣
∫ R

−R

x−u+it

−u+ it
dt

∣∣∣∣∣
≤ 1

2π

∫ R

−R

x−u

u
dt

=
x−uR

πu
,

so this term can be made arbitrarily small for an appropriate choice of u. There-
fore, we have the first result in this case, namely,

|Ic(x,R)− δ(x)| < xc

R log x
.

Now consider the same origin-centered circle of radius
√
c2 +R2, but this

time consider the contour γ which is the major arc that connects c − iR to
c+ iR. From Cauchy’s theorem, we have that

Ic(x,R)− 1

2πi

∮
γ

xs

s
ds = 1

and so

|δ(x)− Ic(x,R)| = |1− Ic(x,R)| =
∣∣∣∣− 1

2πi

∮
γ

xs

s
ds

∣∣∣∣
≤ 1

2π

∮
γ

xc√
c2 +R2

ds

< xc,

as before. This completes the proof.
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Fact (4.1.5). Let f(s) = D(an, s) be a Dirichlet series which is absolutely con-
vergent for Re(s) > c− ε. Then for x ∈ R− Z,∑

n<x

an =
1

2πi

∮
(c)

f(s)
xs

s
ds.

Proof. Since f(s) is uniformly convergent in Re(s) > c− ε, then

1

2πi

∮
(c)

f(s)
xs

s
ds =

1

2πi

∮
(c)

∑
n≥1

(x
n

)s ds
s

=
1

2πi

∑
n≥1

an

∮
(c)

(x/n)
s

s
ds

=
∑
n≥1

anδ
(x
n

)
=

∑
1≤n<x

an.

Fact (4.1.6). For c > 0 and for any integer k > 1, a useful identity is

1

2πi

∮
(c)

xs

sk+1
ds =


1

k!
(log x)k if x > 1

0 if 0 ≤ x < 1

Proof. For x > 1, consider the circle of radius R > c centered at c, and set CR
to be the left semicircle oriented from c+ iR to c− iR. Set IR as the line from
c − iR to c + iR. By Cauchy’s theorem, integrating our function around this
contour picks up the residue of the pole at s = 0, so we’ll calculate that first.
Observe that the Laurent series is given by

xs

sk+1
=

1

sk+1
es log x

=
1

sk+1

∑
n≥0

(s log x)n

n!

=
∑
n≥0

(log x)n

n!
sn−k−1.

Thus, the residue of the pole at s = 0 is the coefficient on the s−1 term in this
expansion, which occurs when the index n = k. That is, by Cauchy’s theorem,

1

2πi

∮
IR+CR

xs

sk+1
ds = Ress=0

(
xs

sk+1

)
=

(log x)k

k!
.
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Therefore, it suffices to show that integrating our function along CR vanishes as
R→∞. Indeed this is the case:∣∣∣∣ 1

2πi

∮
CR

xs

sk+1
ds

∣∣∣∣ ≤ 1

2π

∮
CR

xcds

(R− c)k+1
=

Rxc

2(R− c)k+1
.

For 0 < x ≤ 1, consider the same circle but now set DR as the right semicircle
oriented from c − iR to c + iR. Since the function in question is holomorphic
inside the contour DR− IR, Cauchy’s theorem gives that integrating along each
of these paths gives the same value. So in a similar way as before, we can show
that ∣∣∣∣ 1

2πi

∮
DR

xs

sk+1
ds

∣∣∣∣ ≤ 1

2π

∮
DR

xc

Rk+1
ds =

xc

2Rk
,

which vanishes as R→∞.

Exercise (4.1.8). For a fixed integer k > 0 and for any c > 0, show that

1

2πi

∮
(c)

xsds

s(s+ 1) . . . (s+ k)
=


1

k!

(
1− 1

x

)k
if x > 1

0 if 0 ≤ x ≤ 1.

Proof. For x > 1, consider the circle centered at c of radius R > c + k and set
CR as the left semicircle oriented from c − iR to c + iR. As usual, set IR as
the vertical line from c− iR to c+ iR. Noticing that the interior of this region
contains all of the poles of the function in question, Cauchy’s theorem gives

1

2πi

∮
IR−CR

xsds

s(s+ 1) . . . (s+ k)
=

k∑
n=0

Ress=−n

(
xs

s(s+ 1) . . . (s+ k)

)

=

k∑
n=0

x−n

(−n)(−n+ 1) . . . (−1)(1) . . . (−n+ k)

=

k∑
n=0

x−n

(−1)n(n)(n− 1) . . . (1)(1) . . . (k − n)

=

k∑
n=0

(−1)nx−n

n!(k − n)!

=

k∑
n=0

1

k!

(
k

n

)
(−x)−n

=
1

k!

(
1− 1

x

)k
.

Therefore, it sufficies to show that integrating this function along CR vanishes
as R→∞. Indeed, since |s(s+ 1) . . . (s+ k)| ≥ |sk+1| ≥ (R− c)k+1, we have∣∣∣∣ 1

2πi

∮
CR

xsds

s(s+ 1) . . . (s+ k)

∣∣∣∣ ≤ 1

2π

∮
CR

xcds

(R− c)k+1
=

Rxc

2(R− c)k+1
,
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which concludes the first case. Supposing 0 ≤ x ≤ 1, consider the same circle
and set DR to be the right semicircle oriented from c−iR to c+iR. Our function
is holomorphic inside the region between DR and IR, so by Cauchy’s theorem,
we need only show that the value of the contour integral along DR vanishes as
R→∞. Since |s(s+ 1) . . . (s+ k)| ≥ |sk+1| ≥ (R+ c)k+1, we see that∣∣∣∣ 1

2πi

∮
DR

xsds

s(s+ 1) . . . (s+ k)

∣∣∣∣ ≤ 1

2π

∮
DR

xcds

(R+ c)k+1
=

Rxc

2(R+ c)k+1
.

Exercise (4.1.9). Let f(s) = D(an, s) be a Dirichlet series, absolutely conver-
gent for Re(s) > c− ε. Show that for any integer k ≥ 1,

1

xk

∑
n≤x

an(x− n)k =
k!

2πi

∮
(c)

f(s)xs

s(s+ 1) . . . (s+ k)
ds.

Proof. Using the uniform convergence of f and the result from the previous
exercise, we see

k!

2πi

∮
(c)

f(s)xs

s(s+ 1) . . . (s+ k)
ds =

k!

2πi

∮
(c)

∑
n≥0

ann
−sxs

s(s+ 1) . . . (s+ k)
ds

=
∑
n≥0

an
k!

2πi

∮
(c)

(x/n)sds

s(s+ 1) . . . (s+ k)

=
∑
n≥0

an

(
1− 1

x/n

)k
=

1

xk

∑
n≤x

an(x− n)k.

Section 4.2: The Prime Number Theorem

For T > e2, set σ0 = 1− 1
log T and consider the rectangular contour RT , which

has diagonal vertices σ0 − iT and 2 + iT and counterclockwise orientation. Of
interest is to integrate the function

f(s) = −ζ
′(s)

ζ(s)

around this contour. The immediate problem, however, is that this pushes
to the left of Re(s) = 1, and we have very limited knowledge about the zero
behaviors of ζ(s), ζ ′(s) in that region. But we do know the following: recall
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that f(s) = D(Λ(n), s), and so by (4.1.5), we can express the partial sum up to
some non-integer x as

ψ(x) =
∑
n<x

Λ(n) =
1

2πi

∮
(2)

f(s)
xs

s
ds.

In particular, notice that ψ(x) constitutes the integral along the right dimension
of RT as T →∞. If we could somehow morph the left dimension of RT so that
the only pole of f(s) contained in the modified contour R∗T is at s = 1, then by
Cauchy’s theorem, we’d have

1

2πi

∮
R∗T

f(s)
xs

s
= Ress=1

(
f(s)

xs

s

)
= x,

which is the main term in ψ(x). It would then just be a matter of showing that
the error terms (the values upon integrating the top, left, and bottom portions
of the contour) vanish as x → ∞. This is the motivation for the next few
bounds.

Fact (4.2.1). Let Re(s) > 1. Then

ζ(s) =

n−1∑
m=1

1

ms
− n−s

2
+
n1−s

s− 1
− s

∫ ∞
n

t− [t]− 1/2

ts+1
dt.

Proof. Taking f(t) = 1/ts and k = 0 in Euler-MacLauren summation yields

B∑
m=n

1

ms
=

∫ B

n

dt

ts
+

1

2

(
1

Bs
− 1

ns

)
− s

∫ B

n

{t} − 1/2

ts+1
dt

=
1

1− s
(B1−s − n1−s) +

1

2

(
1

Bs
− 1

ns

)
− s

∫ B

n

t− [t]− 1/2

ts+1
dt,

whereupon taking B →∞ gives

∞∑
m=n

1

ms
=
n1−s

s− 1
− n−s

2
− s

∫ ∞
n

t− [t]− 1/2

ts+1
dt.

Thus, we have established the following meromorphic continuation of ζ(s) to
Re(s) > 0:

ζ(s) =

n−1∑
m=1

1

ms
− n−s

2
+
n1−s

s− 1
− s

∫ ∞
n

t− [t]− 1/2

ts+1
dt.

Fact (4.2.2). For s = σ + it ∈ RT ,

ζ(s)− 1

s− 1
= O(log T ).
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Proof. From the previous fact, we can write

ζ(s)− 1

s− 1
=

n−1∑
m=1

1

ms
+
n1−s − 1

s− 1
− n−s

2
− s

∫ ∞
n

{x} − 1/2

xs+1
dx.

Applying the triangle inequality gives the bound∣∣∣∣ζ(s)− 1

s− 1

∣∣∣∣ ≤ n−1∑
m=1

1

mσ
+

∫ n

1

dx

xσ
+

1

2nσ
+
|s|
2

∫ ∞
n

dx

xσ+1
.

Since
n−1∑
m=1

1

mσ
+

1

2nσ
<

∫ n

1

dx

xσ
+ 1,

we have ∣∣∣∣ζ(s)− 1

s− 1

∣∣∣∣ ≤ 1 + 2

∫ n

1

dx

xσ
+
|s|
2

∫ ∞
n

dx

xσ+1

≤ 1 + 2

∫ n

1

dx

xσ0
+
|s|
2

∫ ∞
n

dx

xσ0+1
.

Estimates on ζ(s)

3 April 2013

Note

n∑
m=1

1

mσ
+

1

2nσ
< 1 +

∫ n

1

dx

xσ
. Thus |ζ(s) − 1

s− 1
| ≤ 1 + s

∫ n

1

dx

xσ0
+

|s|
2

∫ ∞
n

dx

xσ0+1
= 1 + 2[

n1−σ0 − 1

1− σ0
+
|s|n−σ0

2σ0
](∗).

Note As σ0 → 1, (∗)→ 1 + 2[log(n) +
|σ + it|

2n
] which is minimized in terms of

n at the same value of n as (∗), namely
|s|
4
.

For s = σ0 + it,
|s|
4

=
σ0 + it

4
≤ t

4
+

1

4t
. We will take n = [t]. So for s ∈ RT ,

|ζ(s)− 1

s− 1
| ≤ 1+2

∫ T

0

dx

xσ0
+
|s|
2

∫ ∞
T

dx

xσ0+1
= 1+2[

T 1−σ0 − 1
1

log(T )

]+
|s|T 1−σ0

2σ0T
≤

2T 1−σ0 log(T )+
|s|T 1−σ0

2σ0T
= T

1
log(T ) [2 log(T )+

|s|
2σ0T

] = e[2 log(T )+
|s|

2σ0T
]. Now

for s ∈ RT , |s| < 2+T, and since σ0 >
1

2
because T > e2,

|s|
2σ0

<
2 + T

2σ0
< 2+T.

So |ζ(s)− 1

s− 1
| ≤ e[2 log(T ) +

2 + T

T
] << log(T ).
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Fact (4.2.3). For s ∈ ∂RT , ζ(s) = O(log(T )).

Proof. Note For s = σ+it ∈ ∂RT , |
1

s− 1
| ≤ 1

|σ − 1 + it|
≤ min{ 1

|σ − 1|
,

1

1 + 1
}.

From before, we have for s ∈ ∂RT , |ζ(s)| ≤ 1

s− 1
+O(log(T )). |ζ(s)− 1

s− 1
| <<

O(log(T )) =⇒ ζ(s) =
1

s− 1
+ O(log(T )) ≤ min{ 1

|σ − 1|
,

1

t
} + O(log(T )). On

horizontal strips of ∂RT , |ζ(s)| ≤ 1

|T |
+O(log(T )) << log(T ). On vertical strips,

|ζ(s)| ≤ 1

σ − 1
+O(log(T )) ≤ 1

1
log(T )

+O(log(T )) << log(T ).

Exercise (4.2.4). For s = σ + it with fixed σ ≥ 1/2, show that as |t| → ∞,

ζ(σ + it) = O(|t|1/2).

Proof. Using the result from (4.2.1) and methods following the proof of (4.2.2),
we can express

|ζ(σ + it)| ≤ 1 +
n1−σ − 1

1− σ
+

n1−σ

(σ − 1)2 + t2
+ |σ + it| 1

σnσ

≤ 1 +
n1/2 − 1

1− σ
+

n1/2

(σ − 1)2 + t2
+

1

nσ
+
|t|
σnσ

.

Here, setting n = |t| → ∞ gives the result.

Fact (4.2.5). For s ∈ RT ,

|ζ ′(s)− 1

(s− 1)2
| = O(log2 T )

. From 4.2.1,

ζ(s)− 1

s− 1
=

n−1∑
m=1

1

ms
−
∫ n

1

dx

xs
− 1

2ns
− s

∫ ∞
n

{x} − 1
2

xs+1
dx

. Differentiate with respect to s

ζ ′(s)− 1

(s− 1)2
=

n−1∑
m=1

logm

ms
+

∫ n

1

log(x)

xs
dx+

log n

2ns
−
∫ {x} − 1

2

xs+1
+s

∫ ∞
n

({x} − 1
2 ) log x

xs+1
dx

. So, letting n = [T ] again,

ζ ′(s)+
1

(s− 1)2
≤
(

log T + 2 log T

∫ ∞
1

dx

xσ0

)
+

1

2

∫ ∞
T

dx

xσ0+1
+
|s|
2

∫ ∞
n

log x

xσ0+1
dx
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.
u = log x

du =
1

x

dv = x−1−σ0dx

v =
−1

σ0
x−σ0

= log T (1 + 2

∫ T

1

dx

xσ0
) +

1

2

[
1

σ0Tσ0

]
+
|s|
2

[
log T

σ0Tσ0

]
+

1

σ0

∫ ∞
1

dx

xσ0+1

.

Bounds on zeta and zeta prime

5 April 2013

Bound ζ ′(s)
Recall: we have

ζ(s)− 1

s− 1
=

n−1∑
m=1

1

ms
−
∫ n

1

dx

xs
− 1

2ns
− s

∫ ∞
n

{x} − 1
2

xs+1
dx.

Letting n = [T ] and applying the triangle inequality a few times, we obtained
the bound:

|ζ ′(s) +
1

(s− 1)2
| ≤ log T

(
1 + 2

∫ T

1

dx

xσ0

)
+

1

2

(
1

σ0Tσ0

)
+
|s|
2

(
log T

σ0Tσ0
+

1

σ0

∫ ∞
T

dx

xσ0+1

)
� log2 T +

1

2

(
e

σ0T

)
+
|s|
2

(
e log T

σ0T
+

1

σ0

(
− 1

σ0
x−σ0

∣∣∣∣∞
T

))
= log2 T +

1

2

(
e

σ0T

)
+
|s|
2

(
e log T

σ0T
+

e

σ2
0T

)
� log2 T +

log T

1− log T
+

1(
1− 1

log T

)2

� log2 T.

Using side calculation:

σ0 = 1− 1

log T

Tσ0 = elog T(1− 1
log T )

= elog T e−1

=
T

e
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and the facts: |s| =
√
T 2 + 4� T and T > e2.

Fact
For s = σ + it ∈ ∂RT , ζ ′(s) = O(log2 T ).

Proof. From before, we have ζ ′(s) +
1

(s− 1)2
= O(log2 T )

⇒ ζ ′(s) =
1

(s− 1)2
+O(log2 T )⇒ |ζ ′(s)| = 1

(σ − 1)2
.

As before,
1

(s− 1)2
≤ min{ 1

(σ − 1)2,
1

t2

}. So, on the vertical strips of our con-

tour, we have σ ≥ 1− 1

log T
or = 2.

This implies

|σ − 1| ≥ 1

log T
⇒ 1

|σ − 1|
≤ log T ⇒ 1

|σ − 1|2
≤ log2 T.

Thus, |ζ ′(s)| � 1

|s− 1|2
+ log2 T � log2 T.

On the horizonal strips, t = T so we have
1

|s− 1|2
<

1

t2
=

1

T 2
≤ log2 T thus,

we conclude |ζ ′(s)| � log2 T.

Fact 4.2.7

Let s = σ + it as before. Then, there exist c1, c2 ∈ R>0 such that 1− c1

log9 T
≤

σ ≤ 2 and 1 ≤ |t| ≤ T then |ζ(s)| > c2

log7 T
.

Proof. Recall from exercise 3.2.5, we have |ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| ≥ 1 for

σ > 1. This implies |ζ(σ + it)|4 ≤ 1

|ζ(σ + it)ζ3(σ)|
.

Also, recall that ζ(σ)(σ−1) is bounded as σ → 1+. Thus, f(σ)(σ−1) is contin-
uous on [1, 2] so this function will acheive a maximum value. Choose this and
call it B at σ′.
In particular, this means B = ζ(σ′)(σ′−1)⇒ |ζ(σ)(σ−1)| ≤ B for σ ∈ [1, 2]⇒

1

|ζ(σ)|
≥ |σ − 1|

B
.

By exercise 4.2.3, we have that there exists k′ such that

|ζ(σ + 2it)| ≤ k′ log T ⇒ 1

|ζ(σ + 2it)|
≥ k

log T
.

So, we have, |ζ(σ + 2it)|4 ≥ k1(σ − 1)3

log T
where

1

k′
= k and k1 =

k

B3
.

Then, |ζ(σ + 2it)|4 ≥ k1(σ − 1)3

log T
.
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If 1 +
c1

log9 T
≤ σ ≤ 2, then |ζ(σ + 2it)|4 �

k1

(
c31

log27 T

)
log T

=
k1c

3
1

log28 T
.

Thus, |ζ(s)| � 1

log7 T
.

Now, we will use MVT to extend into the region of interest. Choose s′ = σ′+ it

where σ′ = 1 +
c1

log9 T
and 1 ≤ t ≤ T.

Then, by MVT,

|ζ(σ′ + it)− ζ(σ + it)| = |σ − σ′||ζ ′(c)|

for some σ′ < c < σ Then, by 4.2.5, we have

|ζ(σ′ + it)− ζ(σ + it)| � |σ′ − σ|(log2 T.)

So, we can say
|ζ(s)| = |ζ(σ′ + it)|+O((σ − σ′) log2 T ). (?)

Choosing 1− c1

log9 T
≤ σ ≤ 1+

c1

log9 T
so that |σ−σ′| ≤ 2c1

log7 T
⇒ |σ−σ′| log2 T ≤

2c1

log7 T
.

Thus, for c1 sufficiently small (smaller than the constant implied in (?)),

we obtain |ζ(s)| � 1

log7 T
.

With this, we can prove the prime number theorem.

Theorem (4.2.9). There is a positive constant c so that

ψ(x) = x+O(x exp(−c(log x)1/10)).

Remark. Note that this is indeed enough as the error term is o(x).

Proof. Let x be exactly 1/2 more than any natural number. Using the repre-
sentation ψ(x) = −ζ ′(s)/ζ(s), we invoke (4.1.5) and write

ψ(x) =
1

2πi

∮
(a)

−ζ ′(s)
ζ(s)

xs

s
ds,

for any choice of a > 1. We’ll take a = 1 + c/ log9 T , with T ≥ 1 to be chosen
later. Seeing as δ(x/n) > 1, multiplying the result of (4.1.4) by ψ(x) gives the
approximation

ψ(x) =
1

2πi

∫ a+iT

a−iT

−ζ ′(s)
ζ(s)

xs

s
ds+O

( ∞∑
n=1

(x
n

)a
Λ(n) min

(
1,

1

T | log x/n|

))
.
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The bulk of the work comes in estimating this error term, which we’ll do in
cases. First, if n < x

2 or if n > 3x
2 , then the smallest | log x

n | can be is log 3
2 ,

which doesn’t depend on x. In particular, then,

Λ(n)

na
xa min

(
1,

1

T | log x/n|

)
≤ 1

na−1
xa min

(
1,

1

T log 3/2

)
� xa

(a− 1)T

� xa log9 T

T
.

Now, for those n such that x
2 < n < 3x

2 , set z = 1− n
x so that

log
x

n
= − log (1− z) = z +

z2

2
+
z3

3
+ . . . .

Again, we need to determine how small the log term in the denominator can
become. Since |z| ≤ 1/2, this implies that∣∣∣log

x

n

∣∣∣ = |z|
∣∣∣∣(1 +

z

2
+
z2

3
+ . . .

)∣∣∣∣ ≥ 3

4
|z|.

Since this bound depends on x, we’ll have to treat the entire sum at one time.
In particular, we have∑

x
2<n<

3x
2

Λ(n)

na
xa min

(
1,

1

T | log x/n|

)
≤

∑
x
2<n<

3x
2

Λ(n)

na
· xa

T · 3
4

∣∣1− n
x

∣∣
≤

∑
x
2<n<

3x
2

log n(
x
2

)a · xa

T · 3
4

∣∣1− n
x

∣∣
≤

∑
x
2<n<

3x
2

log

(
3x

2

)
2a

T · 3
4

∣∣1− n
x

∣∣
≤

∑
x
2<n<

3x
2

log

(
3x

2

)
x2a

T · 3
4 |x− n|

� x

T
log x

∑
x
2<n<

3x
2

1

|x− n|

� x

T
(log x)2.

Therefore, we have rewritten our central approximation as

ψ(x) =
1

2πi

∫ a+iT

a−iT

−ζ ′(s)
ζ(s)

xs

s
ds+O

(
xa log9 T

T
+
x log2 x

T

)
.

Recall our rectangular contour, RT , with diagonal vertices b− iT and a+ iT
and counterclockwise orientation. Upon setting b = 1− c

log9 T
, Cauchy’s residue
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theorem gives

1

2πi

∮ a+iT

a−iT
−ζ
′(s)

ζ(s)

xs

s
ds = x− 1

2πi

(∮ b+iT

a+iT

−ζ
′(s)

ζ(s)

xs

s
ds+

∮ b−iT

b+iT

−ζ
′(s)

ζ(s)

xs

s
ds+

∮ a−iT

b−iT
−ζ
′(s)

ζ(s)

xs

s
ds

)
.

These integrals are easily bounded with the help of (4.2.5) through (4.2.7).
Observe that for s ∈ RT , we have∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ =
O(log2 T )

O(1/ log7 T )
= O

(
log9 T

)
.

The work in bounding the xs

s bit has already been done in the proof of case 3
of (4.2.1), and so in particular we have∣∣∣∣∣ 1

2πi

∮ b+iT

a+iT

−ζ
′(s)

ζ(s)

xs

s
ds

∣∣∣∣∣� xa log9 T

T∣∣∣∣∣ 1

2πi

∮ a−iT

b−iT
−ζ
′(s)

ζ(s)

xs

s
ds

∣∣∣∣∣� xb log9 T

T
� xa log9 T

T∣∣∣∣∣ 1

2πi

∮ b−iT

b+iT

−ζ
′(s)

ζ(s)

xs

s
ds

∣∣∣∣∣� xb log9 T · T log9 T

log9 T − c
� xb log10 T,

where the final bound is because

T log9 T

log9 T − c
� T log9 T

T log8 T
� log T.

Therefore, we have established

ψ(x) = x+O

(
xa log9 T

T
+ xb log10 T +

x log2 x

T

)
.

Setting T so that
2c log x = log10 T

gives the result.

Ch. 5: Functional Equations

5.1: Poisson Summation

Theorem (Fejér). Let f(x) be a function of a real variable that is bounded,
measurable, and periodic with period 1. Set the Fourier coefficients of f to be

cn =

∫ 1

0

f(x)e−2πinxdx
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and also define

SN (x) =
∑
|n|≤N

cne
2πinx.

If f is continuous at x0 and if the sequence (SN (x0)) converges, then

f(x0) = c0 +

∞∑
n=1

(cne
2πinx0 + c−ne

−2πinx0).

Furthermore, if f is continous and
∑∞
n=−∞ |cn| converges, then

f(x) =

∞∑
n=−∞

cne
2πinx.

Definition. If F (x) is continous with
∫∞
−∞ |F (x)|dx <∞, we define the Fourier

transform of F to be

F̂ (u) =

∫ ∞
−∞

f(x)e−2πixudx.

One can show that F̂ (u) is also continuous, and that
ˆ̂
F (u) = F (−x).

Exercise (5.1.1). For Re(c) > 0, let F (x) = e−c|x|. Show that

F̂ (u) =
2c

c2 + 4π2u2
.

Proof. We calculate

F̂ (u) =

∫ ∞
−∞

e−c|x|−2πixudx

=

∫ 0

−∞
ex(c−2πiu)dx+

∫ ∞
0

e−x(c+2πiu)dx

=
ex

c− 2πiu

∣∣∣0
−∞
− e−x

c+ 2πiu

∣∣∣∞
0

=
2c

c2 + 4π2u2
.

Exercise (5.1.2). For F (x) = e−πx
2

, show that ˆF (u) = eπu
2

.

Theorem (5.1.3: Poisson Summation). Let F ∈ L1(R). Suppose that∑
n∈Z

F (n+ v)
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converges absolutely and uniformly in v, and that∑
m∈Z
|F̂ (m)|

converges. Then ∑
n∈Z

F (n+ v) =
∑
m∈Z

F̂ (m)e2πinm.

Corollary. Taking v = 0 in the previous result gives∑
n∈Z

F (n) =
∑
m∈Z

F̂ (m).

Exercise (5.1.5). With F as before, show that∑
n∈Z

F

(
n+ v

t

)
=
∑
m∈Z
|t|F̂ (mt)e2πimtv.

Exercise (5.1.6). Show that

ec + 1

ec − 1
=

∞∑
n=−∞

2c

c2 + 4π2n2
.

Proof. Using (5.1.1) and the corollary above, it suffices to show

∑
n∈Z

e−c|n| = 2

∞∑
n=0

e−cn − 1

= 2

(
1

1− e−c

)
− 1

=
ec + 1

ec − 1
.

Exercise (5.1.7). Show that∑
n∈Z

e−(n+α)2π/x = x1/2
∑
n∈Z

e−n
2πx+2πinα.

Corollary. Taking α = 0 in the previous exercise gives∑
n∈Z

e−n
2π/x = x1/2

∑
n∈Z

e−n
2πx.

5.2 Riemann Zeta Function
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Definition. Define θ(z) =
∑
n∈Z

eπin
2z. Taking w = iy and w(y) = θ(iy), then

by Thereom 5.18, w

(
1

x

)
= x

1
2w(x).

Recall:

Γ(s) =

∫ infty

0

e−tts−1dtRe(s) > 0.

So,

Γ
(s

2

)
=

∫ ∞
0

e−tt
s
2−1dt

Take t = n2πx,dt = n2πdx. Then,

Γ
(s

2

)
=

∫ ∞
0

e−n
2πxns−2x

s
2−1n2πdx

This implies:

π−
−s
2 Γ
(s

2

)
n−s =

∫ ∞
0

e−n
2πxx

s
2−1dx.

For Re(s) > 1, we can sum over all n ≥ 1 so that

π
−s
2 Γ
(s

2

)
ζ(s) =

∫ ∞
0

x
s
2−1

( ∞∑
n=1

e−n
2πx

)
dx.

Note: The sum is absolutely convergent which justifies the swapping of the in-

tegral and the summation. Noting that

∞∑
n=1

e−n
2πx =

w(x)− 1

2

set
= W (x) so

W

(
1

x

)
= x

1
2W (x) +

x
1
2 − 1

2
,

π
−s
2 Γ
(s

2

)
ζ(s) =

∫ ∞
0

x
s
2−1W (x)dx

=

∫ ∞
1

x
s
2−1W (x)dx+

∫ ∞
1

x
s
2−1W

(
1

x

)
dx

=

∫ ∞
1

x
s
2−1W (x)dx+

∫ ∞
1

(
x
s
2W (x) +

x
1
2 − 1

2

)
x
s
2−1dx

=

∫ ∞
1

x
s
2−1W (x)dx+

∫ ∞
1

W (x)x
1−s
2

dx

x +
1

2

∫ ∞
1

x
−(s+1)

2 dx− 1

2

∫ ∞
1

x−
s
2−1dx

=

∫ ∞
1

W (x)
(
x
s
2 + x

1−s
2

) dx

s
+

1

s− 1
− 1

s
.

This is meromorphic on the entire complex plane with simple poles at s = 0
and s = 1. Also, note that this gives the same value for s and s − 1 (around
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Re(s) =
1

2
). Moreover,

ζ(s) =
1

2
s(s− 1)π

−s
2 Γ
(s

2

)
ζ(s) is analytic on C and ζ(1− s) = ζ(s).
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