1. Let $P(t)$ be the net worth of an investment after t years, that is growing at a 5% rate. Suppose that after two years, the investment is worth $\$ 200$. Write down an initial value problem (the differential equation \& initial condition) for P, and sketch its solution.
2. Let $T(t)$ be the temperature of a cup of water t minutes after being placed in a room where the ambient temperature is 72°.
(a) Write down a differential equation that T satisfies.
(b) Sketch the solution curve of the solution satisfying $T(0)=100$.
(c) Sketch the solution curve of the solution satisfying $T(0)=40$.
(d) Sketch the solution curve of the solution satisfying $T(0)=72$.
3. Repeat the previous exercise, except let $T(t)$ be the temperature of a sheet of metal (which cools down and heats up much quicker than water). Qualitatively, what is the difference between the solution curves in these two problems? Which value of k is bigger and why?
4. Sketch the slope field of the ODE $y^{\prime}=t-2 y$ using the isocline method for $y^{\prime}=c$, for $c=0, \pm 1, \pm 2, \pm 3$. Sketch the particular solutions that satisfy $y(0)=1$ and $y(2)=2$.
5. Sketch the slope field of the ODE $y y^{\prime}=-t$ using the isocline method for $c=0, \pm \frac{1}{2}, \pm 1, \pm 2$, and sketch the particular solution that satisfies $y(0)=1$.
6. Explain why two solution curves in the slope field of an ODE can never cross.
7. Sketch the steady-state (constant) solutions of $y^{\prime}=6+y-y^{2}$ in the $t y$-plane. These solutions divide the plane into regions. Sketch at least one solution curve in each of these region.
8. Consider the differential equation $y^{\prime}=y(4-y)$.
(a) Show that $y(t)=4 /\left(1+C e^{-4 t}\right)$ is a solution for any value of C by plugging it into the ODE. This family of solutions is called a general solution to the differential equation.
(b) Sketch the solutions for $C=1,2, \ldots, 5$. (Hint: This ODE is autonomous).
(c) What are the steady-state (constant) solutions?
(d) The general solution may fail to produce all solutions of a differential equation. Find a solution that is not given by any value of C. (Hint: Look at part (c)).
(e) Describe a physical situation that this differential equation could model, and justify your reasons. (Hint: Consider population growth).
