1. Consider the initial value problem $y^{\prime}=t+y, y(0)=1$.
(a) When computing a solution by hand using Euler's method, it is beneficial to arrange your work in a table, as shown below where the first step is computed. Continue with Euler's method using step-size $h=0.1$ and complete all missing entries of the table.

k	t_{k}	y_{k}	$f\left(t_{k}, y_{k}\right)=t_{k}+y_{k}$	h	$f\left(t_{k}, y_{k}\right) \cdot h$
0	0.0	1.0	1.0	0.1	0.1
1	0.1	1.1			
2	0.2				
3	0.3				
4	0.4				
5	0.5				

(b) The general solution of $y^{\prime}=t+y$ is $y(t)=C e^{t}-t-1$. Using this, compute the actual value of $y(0.5)$.
2. Consider the initial value problem $y^{\prime}=(1+t) y, y(0)=-1$.
(a) Use Euler's method to approximate $y(1)$, for step-size $h=0.2$, and then for $h=0.1$. Arrange your results in the tabular form as in the previous exercise.
(b) Compute the actual value of $y(1)$ by solving the initial value problem $y^{\prime}=(1+t) y$, $y(0)=-1$ and plugging in $t=1$.
3. Solve for t, and simplify whenever possible.
(a) $3 e^{-4 t}=5$
(b) $2=e^{3} \cdot e^{2 t}$
(c) $t^{2}=e^{6}$
(d) $\left(\frac{4}{3}\right)^{-t}=7$
(e) $e^{\frac{1}{3} \ln t}=27$
(f) $e^{-\frac{1}{3} \ln t}=27$
4. Compute the following integrals:
(a) $\int \frac{1}{2 t} d t$
(b) $\int \frac{1}{3-4 t} d t$
5. Find the general solution of the following differential equations.
(a) $y^{\prime}=t y$
(b) $t y^{\prime}=-2 y$
(c) $y^{\prime}=e^{t-y}$
6. Suppose that $\$ 1200$ is invested at a rate of 5%, compounded continuously.
(a) Assuming no additional withdrawals or deposits, how much will be in the account after 10 years?
(b) How long will it take the balance to reach $\$ 5000$?
7. Tritium is an isotope of hydrogen that is sometimes used as a biochemical tracer. Suppose that 100 mg of tritium decays to 80 mg in 4 hours. Determine its half-life.

