1. Sove the following initial value problems.
(a) $y^{\prime \prime}-y^{\prime}-2 y=0, \quad y(0)=-1, \quad y^{\prime}(0)=2$
(b) $y^{\prime \prime}-4 y^{\prime}-5 y=0, \quad y(1)=-1, \quad y^{\prime}(1)=-1$
(c) $y^{\prime \prime}+25 y=3, \quad y(0)=1, \quad y^{\prime}(0)=-1$
(d) $y^{\prime \prime}-2 y^{\prime}+17 y=0, \quad y(0)=-2, \quad y^{\prime}(0)=3$
2. Find the general solution to the following $2^{\text {nd }}$ order linear inhomogeneous ODEs, by solving the associated homogeneous equation, and then finding a particular (constant) solution.
(a) $y^{\prime \prime}+y^{\prime}-12 y=24$
(b) $y^{\prime \prime}=-4 y+3$
3. As we've seen, to solve ODE of the form

$$
y^{\prime \prime}+p y^{\prime}+q y=0, \quad p \text { and } q \text { constants }
$$

we assume that the solution has the form $e^{r t}$, and then we plug this back into the ODE to get the characteristic equation: $r^{2}+p r+q=0$. Given that this equation has a double root $r=r_{1}$ (i.e., the roots are $r_{1}=r_{2}$), show by direct substitution that $y=t e^{r t}$ is a solution of the ODE, and then write down the general solution.
4. Suppose that $z(t)=x(t)+i y(t)$ is a solution of

$$
z^{\prime \prime}+p z^{\prime}+q z=A e^{i \omega t}
$$

Substitute $z(t)$ into this equation above. Then compare (equate) the real and imaginary parts of each side to prove two facts:

$$
\begin{aligned}
x^{\prime \prime}+p x^{\prime}+q x & =A \cos \omega t \\
y^{\prime \prime}+p y^{\prime}+q y & =A \sin \omega t .
\end{aligned}
$$

Write a sentence or two summarizing the significance of this result.
5. Solve the following initial value problems using the method of undetermined coefficients.
(a) $y^{\prime \prime}+3 y^{\prime}+2 y=-3 e^{-4 t}, \quad y(0)=1, \quad y^{\prime}(0)=0$
(b) $y^{\prime \prime}+2 y^{\prime}+2 y=2 \cos 2 t, \quad y(0)=-2, \quad y^{\prime}(0)=0$
(c) $y^{\prime \prime}+4 y^{\prime}+4 y=4-t, \quad y(0)=-1, \quad y^{\prime}(0)=0$
(d) $y^{\prime \prime}-2 y^{\prime}+y=t^{3}, \quad y(0)=1, \quad y^{\prime}(0)=0$
6. Solve the following first order differential equations using the method of undetermined coefficients.
(a) $y^{\prime}-3 y=5 e^{2 t}$
(b) $y^{\prime}+2 y=3 t$
(c) $T^{\prime}=k(-t-T)$
(d) $T^{\prime}=k(A \sin \omega t-T)$

