1. Sove the following initial value problems.

(a)
$$y'' - y' - 2y = 0$$
, $y(0) = -1$, $y'(0) = 2$

(b)
$$y'' - 4y' - 5y = 0$$
, $y(1) = -1$, $y'(1) = -1$

(c)
$$y'' + 25y = 3$$
, $y(0) = 1$, $y'(0) = -1$

(d)
$$y'' - 2y' + 17y = 0$$
, $y(0) = -2$, $y'(0) = 3$

2. Find the general solution to the following 2nd order linear inhomogeneous ODEs, by solving the associated homogeneous equation, and then finding a particular (constant) solution.

(a)
$$y'' + y' - 12y = 24$$

(b)
$$y'' = -4y + 3$$

3. As we've seen, to solve ODE of the form

$$y'' + py' + qy = 0$$
, p and q constants

we assume that the solution has the form e^{rt} , and then we plug this back into the ODE to get the *characteristic equation*: $r^2 + pr + q = 0$. Given that this equation has a double root $r = r_1$ (i.e., the roots are $r_1 = r_2$), show by direct substitution that $y = te^{rt}$ is a solution of the ODE, and then write down the general solution.

4. Suppose that z(t) = x(t) + iy(t) is a solution of

$$z'' + pz' + qz = Ae^{i\omega t}.$$

Substitute z(t) into this equation above. Then compare (equate) the real and imaginary parts of each side to prove two facts:

$$x'' + px' + qx = A\cos\omega t$$

$$y'' + py' + qy = A\sin\omega t.$$

Write a sentence or two summarizing the significance of this result.

- 5. Solve the following initial value problems using the method of undetermined coefficients.
 - (a) $y'' + 3y' + 2y = -3e^{-4t}$, y(0) = 1, y'(0) = 0
 - (b) $y'' + 2y' + 2y = 2\cos 2t$, y(0) = -2, y'(0) = 0
 - (c) y'' + 4y' + 4y = 4 t, y(0) = -1, y'(0) = 0
 - (d) $y'' 2y' + y = t^3$, y(0) = 1, y'(0) = 0
- 6. Solve the following first order differential equations using the method of undetermined coefficients.
 - (a) $y' 3y = 5e^{2t}$
 - (b) y' + 2y = 3t
 - (c) T' = k(-t T)
 - (d) $T' = k(A\sin\omega t T)$