1. If $y_f(t)$ is a solution of

$$y'' + py' + qy = f(t)$$

and $y_q(t)$ is a solution of

$$y'' + py' + qy = g(t),$$

show that $z(t) = \alpha y_f(t) + \beta y_g(t)$ is a solution of

$$y'' + py' + qy = \alpha f(t) + \beta g(t),$$

where α and β are any real numbers, by plugging it into the ODE.

- 2. Find the general solution to the following 2nd order linear inhomogeneous ODEs.
 - (a) $y'' + 2y' + 2y = 2 + \cos 2t$
 - (b) $y'' + 25y = 2 + 3t + 4\cos 2t$
 - (c) $y'' y = t e^{-t}$.
- 3. (a) Find the general solution of $y'' + 3y' + 2y = te^{-4t}$. (Look for a particular solution of the form $y_p = (at + b)e^{-4t}$.)
 - (b) Use a similar approach as above to find a solution to the differential equation $y'' + 2y' + y = t^2e^{-2t}$.
- 4. Find the general solution of $y'' + 2y' + 2y = e^{-2t} \sin t$. (Look for a particular solution of the form $y_p = e^{-2t} (a \cos t + b \sin t)$.)
- 5. For the following exercises, rewrite the given function in the form

$$y = A\cos(\omega t - \phi) = A\cos\left(\omega\left(t - \frac{\phi}{\omega}\right)\right)$$
,

and then plot the graph of this function.

- (a) $y = \cos 2t + \sin 2t$
- (b) $y = \cos t \sin t$
- (c) $y = \cos 4t + \sqrt{3}\sin 4t$
- (d) $y = -\sqrt{3}\cos 2t + \sin 2t$.
- 6. Consider the undamped oscillator

$$mx'' + kx = 0,$$
 $x(0) = x_0,$ $x'(0) = v_0.$

- (a) Write the general solution of this initial value problem in the form $x(t) = a \cos \omega t + b \sin \omega t$ (i.e., determine a, b, and ω .).
- (b) Write your solution in the form $x(t) = A\cos(\omega t \phi)$ (i.e., determine A).