1. If $y_{f}(t)$ is a solution of

$$
y^{\prime \prime}+p y^{\prime}+q y=f(t)
$$

and $y_{g}(t)$ is a solution of

$$
y^{\prime \prime}+p y^{\prime}+q y=g(t),
$$

show that $z(t)=\alpha y_{f}(t)+\beta y_{g}(t)$ is a solution of

$$
y^{\prime \prime}+p y^{\prime}+q y=\alpha f(t)+\beta g(t),
$$

where α and β are any real numbers, by plugging it into the ODE.
2. Find the general solution to the following $2^{\text {nd }}$ order linear inhomogeneous ODEs.
(a) $y^{\prime \prime}+2 y^{\prime}+2 y=2+\cos 2 t$
(b) $y^{\prime \prime}+25 y=2+3 t+4 \cos 2 t$
(c) $y^{\prime \prime}-y=t-e^{-t}$.
3. (a) Find the general solution of $y^{\prime \prime}+3 y^{\prime}+2 y=t e^{-4 t}$. (Look for a particular solution of the form $y_{p}=(a t+b) e^{-4 t}$.)
(b) Use a similar approach as above to find a solution to the differential equation $y^{\prime \prime}+$ $2 y^{\prime}+y=t^{2} e^{-2 t}$.
4. Find the general solution of $y^{\prime \prime}+2 y^{\prime}+2 y=e^{-2 t} \sin t$. (Look for a particular solution of the form $y_{p}=e^{-2 t}(a \cos t+b \sin t)$.)
5. For the following exercises, rewrite the given function in the form

$$
y=A \cos (\omega t-\phi)=A \cos \left(\omega\left(t-\frac{\phi}{\omega}\right)\right),
$$

and then plot the graph of this function.
(a) $y=\cos 2 t+\sin 2 t$
(b) $y=\cos t-\sin t$
(c) $y=\cos 4 t+\sqrt{3} \sin 4 t$
(d) $y=-\sqrt{3} \cos 2 t+\sin 2 t$.
6. Consider the undamped oscillator

$$
m x^{\prime \prime}+k x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=v_{0} .
$$

(a) Write the general solution of this initial value problem in the form $x(t)=a \cos \omega t+$ $b \sin \omega t$ (i.e., determine a, b, and ω.).
(b) Write your solution in the form $x(t)=A \cos (\omega t-\phi)$ (i.e., determine A).

