- 1. Solve the following differential equations.
 - (a) y' = -3y(b) 2y' = t + 6y(c) $2y' = t^2 + 6y$ (d) y'' + 4y = 0(e) y'' = -9y + 12.
- 2. For each system below, write it as Ax = b. Find all solutions, and sketch the graph of the lines in each system on the same axis. Are the resulting lines intersecting, parallel, or coincident?
 - (a) $x_1 + 3x_2 = 0$, $2x_1 x_2 = 0$ (b) $-x_1 + 2x_2 = 4$, $2x_1 - 4x_2 = -6$ (c) $2x_1 - 3x_2 = 4$, $x_1 + 2x_2 = -5$ (d) $3x_1 - 2x_2 = 0$, $-6x_1 + 4x_2 = 0$ (e) $2x_1 - 3x_2 = 6$, $-4x_1 + 6x_2 = -12$
- 3. For each part, find the determinant, eigenvalues and eigenvectors of the given matrix. If the matrix is invertible, find its inverse.

(a)
$$\mathbf{A} = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix}$$

(b) $\mathbf{A} = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix}$
(c) $\mathbf{A} = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}$
(d) $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix}$
(e) $\mathbf{A} = \begin{pmatrix} -1 & -4 \\ 1 & -1 \end{pmatrix}$
(f) $\mathbf{A} = \begin{pmatrix} 5/4 & 3/4 \\ -3/4 & -1/4 \end{pmatrix}$

4. For each problem below, find the eigenvalues of the given matrix, and then describe how the nature of the eigenvalue (e.g., positive/negative, complex, repeated, etc.) depends on the parameter α .

(a)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & \alpha \end{pmatrix}$$
 (b) $\mathbf{A} = \begin{pmatrix} 1 & -\alpha \\ 2\alpha & 3 \end{pmatrix}$

- 5. Let A be a 2×2 matrix. In this problem we will show that $\lambda = 0$ is an eigenvalue of a matrix **A** if and only if det(**A**) = 0.
 - (a) Write the characteristic polynomial (i.e., the polynomial $det(\mathbf{A} \lambda I) = 0$ in terms of the determinant and trace of A.
 - (b) Show that if $\lambda = 0$ is an eigenvalue of **A**, then det(**A**) = 0.
 - (c) Show that if $det(\mathbf{A}) = 0$, then $\lambda = 0$ is an eigenvalue of \mathbf{A} .
 - (d) Now, make the same argument that $\lambda = 0$ is an eigenvalue if and only if det(\mathbf{A}) = 0, without reference to the characteristic polynomial. (*Hint*: If $\lambda = 0$ is an eigenvalue, then $\mathbf{A}\mathbf{v} = 0\mathbf{v} = \mathbf{0}$ for some $\mathbf{v} \neq \mathbf{0}$. When does such a homogeneous system have a non-zero solution?)