1. Find the general solution for each of the given system of equations. Draw a phase portrait. Describe the behavior of the solutions as $t \rightarrow \infty$.
(a) $\mathrm{x}^{\prime}=\left(\begin{array}{cc}5 & -1 \\ 3 & 1\end{array}\right) \mathbf{x}$
(b) $\quad \mathrm{x}^{\prime}=\left(\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right) \mathrm{x}$
(c) $\mathrm{x}^{\prime}=\left(\begin{array}{cc}1 & 1 \\ 4 & -2\end{array}\right) \mathbf{x}$
(d) $\mathrm{x}^{\prime}=\left(\begin{array}{ll}4 & -3 \\ 8 & -6\end{array}\right) \mathbf{x}$
2. In each of the next four problems, the eigenvalues and eigenvectors of a matrix A are given. Consider the corresponding system $\mathbf{x}^{\prime}=\mathbf{A x}$. Without using a computer, draw each of the following graphs.
(i) Sketch a phase portrait of the system.
(ii) Sketch the solution curve passing through the initial point $(2,3)$.
(iii) For the curve in part (ii), sketch the component plots of x_{1} versus t and x_{2} versus t on the same set of axes.
(a) $\quad \lambda_{1}=-1, \quad \mathbf{v}_{1}=\binom{-1}{2} ; \quad \lambda_{2}=-4, \quad \mathbf{v}_{2}=\binom{1}{2}$.
(b) $\quad \lambda_{1}=1, \quad \mathbf{v}_{1}=\binom{-1}{2} ; \quad \lambda_{2}=-4, \quad \mathbf{v}_{2}=\binom{1}{2}$.
(c) $\quad \lambda_{1}=-1, \quad \mathbf{v}_{1}=\binom{-1}{2} ; \quad \lambda_{2}=4, \quad \mathbf{v}_{2}=\binom{1}{2}$.
(d) $\quad \lambda_{1}=1, \quad \mathbf{v}_{1}=\binom{1}{2} ; \quad \lambda_{2}=4, \quad \mathbf{v}_{2}=\binom{1}{-2}$.
3. In each of the next four problems, the eigenvalues and eigenvectors of a matrix A are given. Consider the corresponding system $\mathbf{x}^{\prime}=\mathbf{A x}$. Without using a computer, draw each of the following graphs.
(i) Sketch a phase portrait of the system.
(ii) Sketch the trajectory passing through the initial point $(2,3)$.
(a) $\quad \lambda_{1}=-4, \quad \mathbf{v}_{1}=\binom{-1}{2} ; \quad \lambda_{2}=-1, \quad \mathbf{v}_{2}=\binom{1}{2}$.
(b) $\quad \lambda_{1}=4, \quad \mathbf{v}_{1}=\binom{-1}{2} ; \quad \lambda_{2}=-1, \quad \mathbf{v}_{2}=\binom{1}{2}$.
(c) $\quad \lambda_{1}=-4, \quad \mathbf{v}_{1}=\binom{-1}{2} ; \quad \lambda_{2}=1, \quad \mathbf{v}_{2}=\binom{1}{2}$.
(d) $\quad \lambda_{1}=4, \quad \mathbf{v}_{1}=\binom{1}{2} ; \quad \lambda_{2}=1, \quad \mathbf{v}_{2}=\binom{1}{-2}$.
4. Find the general solution for each of the given systems in terms of real-valued function, and draw a phase portrait. Describe the behavior of the solutions as $t \rightarrow \infty$.
(a) $\mathrm{x}^{\prime}=\left(\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right) \mathrm{x}$
(b) $\mathrm{x}^{\prime}=\left(\begin{array}{ll}1 & -1 \\ 5 & -3\end{array}\right) \mathrm{x}$
(c) $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & 2 \\ -5 & -1\end{array}\right) \mathbf{x}$
5. In the problems below, the coefficient matrix contains a parameter α.
(a) Determine the eigenvalues in terms of α.
(b) Find the critical value or values of α where the qualitative nature of the phase portrait for the system changes.
(c) Draw a phase portrait for a value of α slight below, and for another value slightly above, each critical value.
(d) Draw a phase portrait when α is exactly the critical value.
(a) $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\alpha & 1 \\ -1 & \alpha\end{array}\right) \mathbf{x}$
(b) $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}-1 & \alpha \\ -1 & -1\end{array}\right) \mathbf{x}$
6. Find the general solution for each of the given systems and draw a phase portrait. Describe the behavior of the solutions as $t \rightarrow \infty$.
(a) $\mathbf{x}^{\prime}=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right) \mathbf{x}$
(b) $\quad \mathrm{x}^{\prime}=\left(\begin{array}{cc}-3 / 2 & 1 \\ -1 / 4 & -1 / 2\end{array}\right) \mathrm{x}$
(c) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}-1 & -1 / 2 \\ 2 & -3\end{array}\right) \mathbf{x}$
