1. Solve the following differential equations:
(a) $y^{\prime \prime}+6 y^{\prime}+9 y=5$
(b) $y^{\prime \prime}=-\omega^{2} y$
(c) $y^{\prime}+2 y=e^{t}$
(d) $y^{\prime}+3 y=0$.
2. Find the Laplace transform of the following functions by explicitly computing $\int_{0}^{\infty} f(t) e^{-s t} d t$.
(a) $f(t)=3$
(b) $f(t)=e^{3 t}$
(c) $f(t)=\cos 2 t$
(d) $f(t)=t e^{2 t}$
(e) $f(t)=e^{-3 t} \sin 2 t$
3. Sketch each of the following piecewise defined functions, and compute their Laplace transforms.
(a) $f(t)= \begin{cases}0, & 0 \leq t<4 \\ 5, & t \geq 4\end{cases}$
(b) $f(t)= \begin{cases}t, & 0 \leq t<3 \\ 3, & t \geq 3\end{cases}$
4. Engineers frequently use the Heavyside function, defined by

$$
H(t)= \begin{cases}0, & t<0 \\ 1, & t \geq 0\end{cases}
$$

to emulate turning on a switch at a certain instance in time. Sketch the graph of the function $x(t)=e^{0.2 t}$ and compute its Laplace transform, $X(s)$. On a different set of axes, sketch the graph of

$$
y(t)=H(t-3) e^{0.2 t}
$$

and calculate its Laplace transform, $Y(s)$. How do $X(s)$ and $Y(s)$ differ? What do you think the Laplace transform of $H(t-c) e^{0.2 t}$ is, where c is an arbitrary positive constant?
5. Find the Laplace transform of the following functions by using a table of Laplace transforms
(a) $f(t)=-2$
(b) $f(t)=e^{-2 t}$
(c) $f(t)=\sin 3 t$
(d) $f(t)=t e^{-3 t}$
(e) $f(t)=e^{2 t} \cos 2 t$
6. Transform the given initial value problem into an algebraic equation involving $Y(s):=$ $\mathcal{L}(y)$, and solve for $Y(s)$.
(a) $y^{\prime \prime}+y=\sin 4 t, \quad y(0)=0, \quad y^{\prime}(0)=1$
(b) $y^{\prime \prime}+y^{\prime}+2 y=\cos 2 t+\sin 3 t, \quad y(0)=-1, \quad y^{\prime}(0)=1$
(c) $y^{\prime}+y=e^{-t} \sin 3 t, \quad y(0)=0$

