1. Find the inverse Laplace transform of the following functions.
(a) $Y(s)=\frac{2}{3-5 s}$
(b) $Y(s)=\frac{1}{s^{2}+4}$
(c) $Y(s)=\frac{5 s}{s^{2}+9}$
(d) $Y(s)=\frac{3}{s^{2}}$
(e) $Y(s)=\frac{3 s+2}{s^{2}+25}$
(f) $Y(s)=\frac{2-5 s}{s^{2}+9}$
(g) $Y(s)=\frac{s}{(s+2)^{2}+4}$
(h) $Y(s)=\frac{3 s+2}{s^{2}+4 s+29}$
(i) $Y(s)=\frac{2 s-2}{(s-4)(s+2)}$
(j) $Y(s)=\frac{3 s^{2}+s+1}{(s-2)\left(s^{2}+1\right)}$
2. Use the Laplace transform to solve the following initial value problems.
(a) $y^{\prime}-4 y=e^{-2 t} t^{2}, \quad y(0)=1$
(b) $y^{\prime \prime}-9 y=-2 e^{t}, \quad y(0)=0, \quad y^{\prime}(0)=1$
3. Find the Laplace transform of the given functions.
(a) $3 H(t-2)$
(b) $(t-2) H(t-2)$
(c) $e^{2(t-1)} H(t-1)$
(d) $H(t-\pi / 4) \sin 3(t-\pi / 4)$
(e) $t^{2} H(t-1)$
(f) $e^{-t} H(t-2)$
4. In this exercise, you will examine the effect of shifts in the time domain on the Laplace transform (graphically).
(a) Sketch the graph of $f(t)=\sin t$ in the time domain. Find the Laplace transform $F(s)=\mathcal{L}\{f(t)\}(s)$. Sketch the graph of F in the s-domain on the interval [0, 2].
(b) Sketch the graph of $g(t)=H(t-1) \sin (t-1)$ in the time domain. Find the Laplace transform $G(s)=\mathcal{L}\{g(t)\}(s)$. Sketch the graph of G in the s-domain on the interval $[0,2]$ on the same axes used to sketch the graph of F.
(c) Repeat the directions in part (b) for $g(t)=H(t-2) \sin (t-2)$. Explain why engineers like to say that "a shift in the time domain leads to an attenuation (scaling) in the s-domain."
5. Use the Heaviside function to concisely write each piecewise function.
(a) $f(t)= \begin{cases}5 & 2 \leq t<4 ; \\ 0 & \text { otherwise }\end{cases}$
(b) $f(t)= \begin{cases}0 & t<0 ; \\ t & 0 \leq t<3 \\ 4 & t \geq 3\end{cases}$
(c) $f(t)= \begin{cases}0 & t<0 ; \\ t^{2} & 0 \leq t<2 \\ 4 & t \geq 2\end{cases}$
6. Find the inverse Laplace transform of each function. Create a piecewise definition for your solution that doesn't use the Heavyside function.
(a) $F(s)=\frac{e^{-2 s}}{s+3}$
(b) $F(s)=\frac{1-e^{-s}}{s^{2}}$
(c) $F(s)=\frac{e^{-s}}{s^{2}+4}$
