1. For each initial value problem, sketch the forcing term, and then solve for $y(t)$. Write your solution as a piecewise function (i.e., not using the Heavysie function). Recall that the function $H_{a b}(t)=H(t-a)-H(t-b)$ is the interval function.
(a) $y^{\prime \prime}+4 y=H_{01}(t), \quad y(0)=0, \quad y^{\prime}(0)=0$
(b) $y^{\prime \prime}+4 y=t H_{01}(t), \quad y(0)=0, \quad y^{\prime}(0)=0$
2. Define the function

$$
\delta_{p}^{\epsilon}(t)=\frac{1}{\epsilon}\left(H_{p}(t)-H_{p+\epsilon}(t)\right) .
$$

(a) Show that the Laplace transform of $\delta_{p}^{\epsilon}(t)$ is given by

$$
\mathcal{L}\left\{\delta_{p}^{\epsilon}(t)\right\}=e^{-s p} \frac{1-e^{-s \epsilon}}{s \epsilon}
$$

(b) Use l'Hôpital's rule to take the limit of the result in part (a) as $\epsilon \rightarrow 0$. How does this result agree with the fact that $\mathcal{L}\left\{\delta_{p}(t)\right\}=e^{-s p}$ ?
3. Use a Laplace transform to solve the follosing initial value problem:

$$
y^{\prime}=\delta_{p}(t), \quad y(0)=0
$$

How does your answer support what engineers like to say, that the "derivative of a unit step is a unit impulse"?
4. Define the function

$$
H_{p}^{\epsilon}(t)= \begin{cases}0, & 0 \leq t<p \\ \frac{1}{\epsilon}(t-p), & p \leq t<p+\epsilon \\ 1, & t \geq p+\epsilon\end{cases}
$$

(a) Sketch the graph of $H_{p}^{\epsilon}(t)$.
(b) Without being too precise about things, we could argue that $H_{p}^{\epsilon}(t) \rightarrow H_{p}(t)$ as $\epsilon \rightarrow 0$, where $H_{p}(t)=H(t-p)$. Sketch the graph of the derivative of $H_{p}^{\epsilon}(t)$.
(c) Compare your result in (b) with the graph of $\delta_{p}^{\epsilon}(t)$. Argue that $H_{p}^{\prime}(t)=\delta_{p}(t)$.
5. Solve the following initial value problems.
(a) $y^{\prime \prime}+4 y=\delta(t), \quad y(0)=0, \quad y^{\prime}(0)=0$
(b) $y^{\prime \prime}-4 y^{\prime}-5 y=\delta(t), \quad y(0)=0, \quad y^{\prime}(0)=0$

