1. Solve the following differential equations:
(a) $y^{\prime}-2 y=0$
(b) $y^{\prime}-2 y=t-3$
(c) $y^{\prime}-2 y=e^{3 t}$
(d) $y^{\prime \prime}-4 y=0$
(e) $y^{\prime \prime}+4 y=0$
(f) $y^{\prime \prime}+4 y^{\prime}+3 y=10$.
2. The function

$$
f(x)= \begin{cases}0 & -\pi \leq x<-\pi / 2 \\ 1 & -\pi / 2 \leq x<\pi / 2 \\ 0 & \pi / 2 \leq x \leq \pi\end{cases}
$$

can be extended to be periodic of period 2π. Sketch the graph of the resulting function, and compute its Fourier series.
3. The function

$$
f(t)=|x|, \quad \text { for } x \in[-\pi, \pi]
$$

can be extended to be periodic of period 2π. Sketch the graph of the resulting function, and compute its Fourier series.
4. The function

$$
f(x)= \begin{cases}0 & -\pi \leq x<0 \\ x & 0 \leq x \leq \pi\end{cases}
$$

can be extended to be periodic of period 2π. Sketch the graph of the resulting function, and compute its Fourier series.

5 . Consider the 2π-periodic function defined by

$$
f(x)= \begin{cases}x^{2} & -\pi \leq x<\pi \\ f(x-2 k \pi), & -\pi+2 k \pi \leq x<\pi+2 k \pi\end{cases}
$$

Sketch this function (at least for $k=-2,-1,0,1,2$) and compute its Fourier series.
6. Find the Fourier series of the following functions without computing any integrals.
(a) $f(x)=2-3 \sin 4 x+5 \cos 6 x$,
(b) $f(x)=\sin ^{2} x$ [Hint: Use a standard trig identity.]
7. Determine which of the following functions are even, which are odd, and which are neither even nor odd:
(a) $f(t)=x^{3}+3 x$.
(b) $f(t)=x^{2}+|x|$.
(c) $f(t)=e^{x}$.
(d) $f(t)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$.
(e) $f(t)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$.

