MthSc 208 (Fall 2011) Worksheet 3c

## MthSc 208: Differential Equations (Fall 2011) In-class Worksheet 3c: Harmonic motion

| In-class Worksheet 3c: Harmonic motion                                                                                                                                                                                                    |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| NAME:                                                                                                                                                                                                                                     |             |
| When a 2 kg mass is hung from a spring, the spring is displaced by 0.5 m. Now, suppose that is displaced an additional 0.12 m downward from this equilibrium, and then released. We will solve an initial value problem that models this. |             |
| (a) Sketch this mass-spring system, before and after the mass is place on the spring. (Let $x$ sheight of the spring without the mass).                                                                                                   | = 0 be the  |
| (b) At equilibrium, the spring force $kx_0$ equals the gravitational force, $mg$ , in magnitude. Use solve for the spring constant $k$ .                                                                                                  | Jse this to |
| (c) Newton's $2^{\text{nd}}$ law tells us that $F = mx''$ , which is equal to the sum of the forces (grand spring). Write down a second-order differential equation that models this. Include by conditions, $x(0)$ and $x'(0)$ .         |             |

Written by M. Macauley

MthSc 208 (Fall 2011) Worksheet 3c



Written by M. Macauley 2