MthSc 208: Differential Equations (Fall 2011) In-class Worksheet 4c: Systems of differential equations (complex eigenvalues)

NAME:

Consider the system of differential equations: $\begin{cases}x_{1}^{\prime}=-0.5 x_{1}+x_{2}, & x_{1}(0)=0 \\ x_{2}^{\prime}=-x_{1}-0.5 x_{2}, & x_{2}(0)=1\end{cases}$

1. Write this in matrix form, $\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{b}$.
2. Given that the eigenvalues of \mathbf{A} are $\lambda_{1}=-\frac{1}{2}+i$ and $\lambda_{2}=-\frac{1}{2}-i$, with associated eigenvectors $\mathbf{v}_{1}=(1, i)$ and $\mathbf{v}_{2}=(1,-i)$, write the general solution to $\mathbf{x}^{\prime}=\mathbf{A x}$.
3. Use Euler's formula ($e^{i t}=\cos t+i \sin t$) to write a solution (e.g., $\left.\mathbf{x}_{1}(t)\right)$ as a sum of its real and imaginary parts: $\mathbf{x}(t)=\mathbf{u}(t)+i \mathbf{w}(t)$.
4. Write the general solution as a linear combination of real-valued functions: $\mathbf{x}(t)=C_{1} \mathbf{u}(t)+C_{2} \mathbf{w}(t)$.
5. Find the particular solution satisfying the initial condition.
6. Sketch the phase portrait of the system. Also sketch the particular solution satisfying the initial condition.
