MthSc 208: Differential Equations (Fall 2011)
 In-class Worksheet 4d: Systems of differential equations (repeated eigenvalues)

NAME:

Consider the system of differential equations: $\left\{\begin{array}{l}x_{1}^{\prime}=-x_{1}-x_{2} \\ x_{2}^{\prime}=x_{1}-3 x_{2}\end{array}\right.$

1. Write this in matrix form, $\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{b}$.
2. Knowing that \mathbf{A} has a repeated eigenvalue, $\lambda_{1,2}=-2$, and one eigenvector, $\mathbf{v}_{1}=(1,1)$, write down a solution $\mathbf{x}_{1}(t)$ to $\mathbf{x}^{\prime}=\mathbf{A x}$.
3. To find a second solution, assume that $\mathbf{x}_{2}(t)=t e^{\lambda t} \mathbf{v}+e^{\lambda t} \mathbf{w}$. Plug this back into $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ and equate coefficients (of $t e^{-\lambda t}$ and $e^{\lambda t}$) to get a system of two equations, involving \mathbf{v}, \mathbf{w}, and \mathbf{A}.
4. Solve for \mathbf{v} by inspection. Plug this back into the second equation and solve for \mathbf{w} (it will involve a constant, C).
5. Using what you got for $\mathbf{v}(t)$ and $\mathbf{w}(t)$, write down a solution $\mathbf{x}_{2}(t)$ that is not a scalar multiple of \mathbf{x}_{1}. (Pick the simplest value of C that works.)
6. Write down the general solution, $\mathbf{x}(t)$.
7. As $t \rightarrow \infty$, which of the three terms of $\mathbf{x}(t)$ "goes to zero slower"? Use this intuition to sketch the phase portrait.
