MthSc 208: Differential Equations (Fall 2011) In-class Worksheet 7b: The Wave Equation

NAME:

We will solve for the function $u(x, t)$ defined for $0 \leq x \leq \pi$ and $t \geq 0$ which satisfies the following initial value problem of the wave equation:

$$
u_{t t}=c^{2} u_{x x} \quad u(0, t)=u(\pi, t)=0, \quad u(x, 0)=x(\pi-x), \quad u_{t}(x, 0)=1
$$

(a) Carefully descsribe (and sketch) a physical situation that this models.
(b) Assume that $u(x, t)=f(x) g(t)$. Compute $u_{t}, u_{t t}, u_{x}, u_{x x}$, and find boundary conditions for $f(x)$.
(c) Plug $u=f g$ back into the PDE and separate variables by dividing both sides of the equation by $c^{2} f g$. Set this equal to a constant λ, and write down two ODEs: one for $f(x)$ and one for $g(t)$.
(d) Solve the ODE for $f(x)$ (including the boundary conditions), and determine λ. You may assume that $\lambda=-\omega^{2}<0$.
(e) Now that you know what λ is, solve the ODE for $g(t)$.
(f) Find the general solution of the PDE. As before, it will be a superposition (infinite sum) of solutions $u_{n}(x, t)=f_{n}(x) g_{n}(t)$.
(g) Find the particular solution to the initial value problem by using the initial conditions. The following information is useful:
The Fourier sine series of $x(\pi-x)$ is $\sum_{n=1}^{\infty} \frac{4}{\pi n^{3}}\left(1-(-1)^{n}\right) \sin n x$.
(h) What is the long-term behavior of the system? Give a mathematical, and physical, justification.

