MthSc 208: Differential Equations (Fall 2011) In-class Worksheet 7c: The 2D Heat Equation

NAME:

We will solve for the function $u(x, y, t)$ defined for $0 \leq x, y \leq \pi$ and $t \geq 0$ which satisfies the following initial value problem of the heat equation:

$$
\begin{array}{ll}
u_{t}=c^{2}\left(u_{x x}+u_{y y}\right) & u(0, y, t)=u(\pi, y, t)=u(x, 0, t)=u(x, \pi, t)=0 \\
& u(x, y, 0)=2 \sin x \sin 2 y+3 \sin 4 x \sin 5 y
\end{array}
$$

(a) Carefully descsribe (and sketch) a physical situation that this models.
(b) Assume that $u(x, y, t)=f(x, y) g(t)$. Compute $u_{x x}, u_{y y}$, and u_{t}, find boundary conditions for $f(x, y)$.
(c) Plug $u=f g$ back into the PDE and separate variables by dividing both sides of the equation by $c^{2} f g$. Set this equal to a constant λ, and write down two equations: an ODE for $g(t)$, and a PDE $f(x, y)$ (called the Helmholtz equation), with four boundary conditions.
(d) Solve the ODE for $g(t)$.
(e) To solve the PDE for f, assume that $f(x, y)=X(x) Y(y)$. Plug this back in and separate variables. [For consistency, put the $X^{\prime \prime} / X$ term on one side of the equation, and set equal to a constant μ.]
(f) Write down two ODEs - one for $X(x)$ and one for $Y(y)$, and include boundary conditions for both. Hint: It is easier notationally if you introduce a new constant, $\nu:=\lambda-\mu$.
(g) Solve the ODEs for $X(x)$ and $Y(y)$, and determine μ and ν (and hence λ). You should get a for each choice of positive integers $n, m \in \mathbb{N}$, call it $\lambda_{n m}$.
(h) For each $n, m \in \mathbb{N}$, we have a solution $u_{n m}(x, y, t)=f_{n m}(x, y) g_{n m}(t)$. Write down this solution.
(i) Find the general solution of the PDE. It will be a doubly infinite sum (superposition) of solutions: $\sum_{n, m \in \mathbb{N}} u_{n m}(x, y, t)$.
(g) Find the particular solution to the initial value problem by using the initial condition.
(h) What is the long-term behavior of the system? Give a mathematical, and physical, justification.

