1. Let X be a random variable with probability desnsity function

$$
f(x)= \begin{cases}c\left(1-x^{2}\right) & -1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) What is the value of c ?
(b) What is the cumulative distribution function of X ?
2. Consider the function

$$
f(x)= \begin{cases}C\left(2 x-x^{3}\right) & 0<x<\frac{5}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Could f be a probability density function? If so, determine C. Repeat if $f(x)$ were given by

$$
f(x)= \begin{cases}C\left(2 x-x^{2}\right) & 0<x<\frac{5}{2} \\ 0 & \text { otherwise }\end{cases}
$$

3. A filling station is supplied with gasoline once a week. If its weekly volume of sales in thousands of gallons is a random variable with probability density function

$$
f(x)= \begin{cases}5(1-x)^{4} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

What must the capacity of the tank be so that the probability of the supply's being exhausted in a given week is 0.01 ?
4. Compute $E[X]$ if X has a density function given by
(a) $f(x)= \begin{cases}\frac{1}{4} x e^{-x / 2} & x>0 \\ 0 & \text { otherwise }\end{cases}$
(b) $f(x)= \begin{cases}c\left(1-x^{2}\right) & -1<x<1 \\ 0 & \text { otherwise }\end{cases}$
(c) $f(x)= \begin{cases}5 x^{-2} & x>5 \\ 0 & x \leq 5\end{cases}$
5. You arrive at a bus stop at 10:00, knowing that the bus will arrive at some time uniformly distributed between 10 and 10:30.
(a) What is the probability that you will have to wait longer than 10 minutes?
(b) If, at 10:15, the bus has not yet arrived, what is the probability that you will have to wait at least an additional 10 minutes?
6. If X is a normal random variable with parameters $\mu=10$ and $\sigma^{2}=36$, compute
(a) $P\{X>5\}$;
(b) $P\{4<X<16\}$;
(c) $P\{X<8\}$;
(d) $P\{X<20\}$;
(e) $P\{X>16\}$.
7. Suppose that X is a normal random variable with mean 5. If $P\{X>9\}=0.2$, approximately what is $\operatorname{Var}(X)$?
8. Let X be a normal random varaible with mean 12 and variance 4 . Find the value of c such that $P\{X>c\}=0.1$.
9. If 65% of the population of a large community is in favor of a proposed rise in school taxes, approximate the probability that a random sample of 100 people will contain
(a) at least 50 who are in favor of the proposition;
(b) between 60 and 70 inclusive who are in favor;
(c) fewer than 75 in favor.
10. One thousand independent rolls of a fair die will be made. Compute an approximation to the probability that the number 6 will appear between 150 and 200 times inclusively. If the number 6 appears exactly 200 times, find the probability that the number 5 will appear less than 150 times?
11. In 10,000 independent tosses of a coin, the coin landed on heads 5800 times. Is it reasonable to assume that the coin is not fair? Explain your reasoning.
12. Recall that the standard deviation of X, denoted $\operatorname{SD}(X)$, is given by $\operatorname{SD}(X)=\sqrt{\operatorname{Var}(X)}$. Find $\operatorname{SD}(a X+b)$ if X has variance σ^{2}.

