1. The joint density of X and Y is given by

$$f_{X,Y}(x,y) = e^{-(x+y)}$$
 $0 \le x < \infty$, $0 \le y < \infty$.

- (a) Find P(X < Y).
- (b) Find P(X < a).
- (c) Compute the marginal densities $f_X(x)$ and $f_Y(y)$.
- (d) Are X and Y independent?
- 2. Consider the joint pdf

$$f_{X,Y}(x,y) = \frac{1}{x}$$
 $0 < y < x < 1.$

- (a) Compute the marginal densities $f_X(x)$ and $f_Y(y)$.
- (b) Compute the expected values E[X] and E[Y].
- 3. Let X and Y be independent. For each of the following situations, write down the joint density function for X and Y.
 - (a) $X \sim \text{Unif}[0, 1]$ and $Y \sim \text{Unif}[0, 2]$.
 - (b) $X \sim \text{Normal}(2, 4)$ and $Y \sim \text{Exp}(\lambda = 5)$.
 - (c) $X, Y \sim \text{Exp}(\lambda = 2).$
- 4. Let (X, Y) have joint probability mass function (pmf)

$$p_{X,Y}(x,y) = \frac{x+y}{21}$$
 $x = 1, 2, 3;$ $y = 1, 2.$

- (a) Find $p_X(x)$ and $p_Y(y)$, the marginal pmfs of X and Y.
- (c) Are X and Y independent?
- (d) Find P(X > Y).
- (e) Find P(Y = 2X).
- (f) Find P(X + Y = 3).
- (g) Find P(Y = 3 | X = 2)
- 5. Let (X, Y) have joint probability density function (pdf)

$$f_{X,Y}(x,y) = k$$
 $0 \le x \le 2$, $0 \le y \le 1$, and $2y \le x$.

- (a) Find k.
- (b) Find $P(X \ge 3Y)$.
- (c) Compute the marginal densities $f_X(x)$ and $f_Y(y)$.
- (d) Are X and Y independent?

6. Let

$$f_{X,Y}(x,y) = 2$$
 $0 \le x \le 1$, $0 \le y \le 1$, $0 \le x + y \le 1$.

- (a) Find the conditional pdf for Y|x.
- (b) Find $E(Y \mid X = x)$.
- (c) Find the conditional pdf for X|y.
- (d) Find $E(X \mid Y = y)$.
- 7. Let X and Y have joint pmf

$$p_{X,Y}(x,y) = \frac{x+y}{32}$$
 $x = 1,2;$ $y = 1,2,3,4$

Find the conditional pmf of Y given X = x. Use this to find $P(Y = 2 \mid |X = 1)$.

- 8. If $Z \sim \text{Normal}(0, 1)$, then it is well-known that E(Z) = 0, $E(Z^2) = 1$, and $E(Z^3) = 3$. Let X be independent of Z with P(X = 1) = P(X = -1) = 0.5. Finally let Y = XZ.
 - (a) Show E(X) = 0 and E(Y) = 0.
 - (b) Show E(YZ) = 0 and that Cov(Y, Z) = 0.
 - (c) Argue that Y and Z are highly dependent. Hint: Find P(|Z| > 1 | |Y| < 1).
 - (d) Conclude that Cov = 0 does not imply independence.
- 9. Let the joint density of X and Y be

$$f_{X,Y}(x,y) = x + y$$
 $0 < x < 1$ $0 < y < 1$.

- (a) Find the marginal distributions of X and Y.
- (b) Find E(X) and E(XY).
- (c) Cov(X, Y). Are X and Y independent?
- 10. A manufacturing system depends on a part, but this part has a back-up. Let X be the time until failure of the first part, and Y the time until failure of the back-up. Assume that X and Y are jointly continuous, with joint density

$$f_{X,Y}(x,y) = e^{-y}$$
 $0 < x < y < \infty$.

- (a) Compute the marginal densities $f_X(x)$ and $f_Y(y)$.
- (b) Find the conditional density for Y given X = x.
- (c) Compute the expected values E[X] and E[Y].
- (d) Compute the variances Var(X) and Var(Y).
- (e) Compute the covariance Cov(X, Y) and correlation $\rho(X, Y)$ of X and Y.