- 1. Let $f \in \mathcal{B}[a, b]$, and suppose that \mathcal{P} and \mathcal{P}^* are partitions of [a, b] with $\mathcal{P}^* \supset \mathcal{P}$. Prove that $\mathcal{U}(\mathcal{P}^*, f) \leq \mathcal{U}(\mathcal{P}, f)$.
- 2. The method used in Example 6.1.6 (d) can be summarized as the following theorem: Let $f \in \mathcal{B}[a, b]$ and suppose there exists a sequence $\{\mathcal{P}_n\}_{n=1}^{\infty}$ of partitions of [a, b] such that

$$\lim_{n \to \infty} \mathcal{L}(\mathcal{P}_n, f) = \lim_{n \to \infty} \mathcal{U}(\mathcal{P}_n, f) = L \in \mathbb{R}$$

Then $f \in \mathcal{R}[a, b]$ and $\int_a^b f = L$. Prove this.

- 3. Use the above theorem to compute $\int_a^b x \, dx$.
- 4. For each of the given functions, check the Riemann integrability and evaluate the Riemann integral on the specificed interval.

(a)
$$f(x) = \begin{cases} -1, & x \in [0,1) \\ 2, & x \in [1,2] \end{cases}$$
 on $[0,2]$. (b) $f(x) = 2x + 1$ on $[0,1]$.

5. Let
$$f(x) = \begin{cases} 0, & x \in \mathbb{Q} \cap [0, 1] \\ x, & x \in \mathbb{Q}^c \cap [0, 1]. \end{cases}$$
 Compute $\underline{\int_0^1} f$ and $\overline{\int_0^1} f$ and determine if $f \in \mathcal{R}[0, 1]$.