1. Find the following integrals. They may or may not exist depending on $p \in \mathbb{R}$.
(a) $\int_{0}^{1} x^{p} d x$,
(b) $\int_{1}^{\infty} x^{p} d x$,
(c) $\int_{0}^{\infty} x^{p} d x$.
2. The Gamma function is defined by $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t$ for $x \in(0, \infty)$. Show that $\Gamma(n+1)=n!$ for all $n \in \mathbb{N}$.
3. Let $\alpha(x)=\left\{\begin{aligned}-1, & x \in[-1,0), \\ 0, & x=0 \\ 1, & x \in(0,1]\end{aligned} \quad\right.$ and $f \in \mathcal{B}[-1,1]$ such that $f$ is continuous at 0 . Evaluate $\int_{-1}^{1} f d \alpha$.
4. Let $\alpha(x)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} H\left(x-\frac{1}{n}\right)$. Evaluate the following integrals.
(a) $\int_{0}^{1} f d \alpha$ for $f \in \mathcal{C}[0,1]$,
(b) $\int_{0}^{1} x d \alpha$,
(c) $\int_{0}^{1} \alpha(x) d x$.
5. Let $\alpha(x)=H(x)+H(x-1)$ on $[-1,1]$ where $H(x)= \begin{cases}0, & x<0, \\ 1, & x \geq 0\end{cases}$
(a) Find $\int_{-1}^{1} x^{2} d \alpha$ without using integration by parts.
(b) Verify your answer in (a) using integration by parts.
(c) Determine whether $\int_{-1}^{1} \alpha(x) d \alpha(x)$ exists or not.
(d) For (c), we might try to use integration by parts as follows:

$$
\int_{-1}^{1} \alpha d \alpha=\left.\alpha^{2}\right|_{-1} ^{1}-\int_{-1}^{1} \alpha d \alpha \quad \Longrightarrow \quad \int_{-1}^{1} \alpha d \alpha=\frac{2^{2}-0^{2}}{2}=2
$$

which is false. What is wrong in the above argument?
6. Find the following integrals if they exist, where $\widetilde{H}(x)= \begin{cases}0, & x \leq 0, \\ 1, & x>0 .\end{cases}$
(a) $\int_{-1}^{1} H d \widetilde{H}$,
(b) $\int_{-1}^{1} \widetilde{H} d H$.
7. Find the following integrals if they exist:
(a) $\int_{0}^{3}[x] d x^{2}$,
(b) $\int_{0}^{3} x^{2} d[x]$,
(c) $\int_{1}^{3}([x]+x) d\left(x^{2}+e^{x}\right)$.

