1. Complete the following proofs that were skipped in lecture:
(a) In the proof of the ratio test, prove that $r>1 \Longrightarrow \sum_{n=1}^{\infty} a_{n}=\infty$.
(b) In the proof of the root test, prove that $\alpha>1 \Longrightarrow \sum_{n=1}^{\infty} a_{n}=\infty$.
(c) Prove that $r \leq \underline{\lim }_{n \rightarrow \infty}\left(a_{n}\right)^{1 / n}$.
2. Determine convergence or divergence of the following infinite series:
(a) $\sum_{n=1}^{\infty} n^{3} e^{-n}$
(b) $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$
(c) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
(d) $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{2}}$
(e) $\sum_{n=1}^{\infty} \frac{p(n)}{a^{n}}, p(x)$ polynomial, $a>1$
(f) $\sum_{n=2}^{\infty} \frac{\ln n}{n}$
(g) $\sum_{n=1}^{\infty} \cos \left(\frac{1}{n^{p}}\right) \quad p>0$.
3. Determine $p, q \in \mathbb{R}$ for which the following infinite series converges:
(a) $\sum_{n=1}^{\infty} \frac{1}{(a n+b)^{p}}, a, b>0$
(b) $\sum_{n=1}^{\infty}(\sin p)^{n}$
4. Apply the root and ratio tests to the series $\sum_{n=1}^{\infty} a_{n}$, where $a_{n}= \begin{cases}2^{-n}, & n \text { is even } \\ 2^{-(n+2)}, & n \text { is odd }\end{cases}$
5. Give an example of a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that

$$
\sum_{n=1}^{\infty}\left(a_{2 n-1}+a_{2 n}\right) \quad \text { converges, } \quad \text { but } \sum_{n=1}^{\infty} a_{n} \text { diverges. }
$$

6. Let $a_{n} \geq 0$ and $\sum_{n=1}^{\infty} a_{n}<\infty$. For each of the following, either prove that the given series converges, or give an example for which the series diverges.
(a) $\sum_{n=1}^{\infty} \frac{a_{n}}{1+a_{n}}$,
(b) $\sum_{n=1}^{\infty} \sqrt{a_{n}}$
(c) $\sum_{n=1}^{\infty} \sqrt{\frac{a_{n}}{n}}$.
7. Prove the following trigonometric identities which were skipped in lecture.
(a) $\sum_{k=1}^{n} \sin (k t) \frac{\cos \frac{t}{2}-\cos \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}}, \quad \forall t \in \mathbb{R} \backslash\{2 \pi m\}_{m \in \mathbb{Z}}$.
(b) $\sum_{k=1}^{n} \cos (k t) \frac{\sin \left(n+\frac{1}{2}\right) t-\sin \frac{t}{2}}{2 \sin \frac{t}{2}}, \quad \forall t \in \mathbb{R} \backslash\{2 \pi m\}_{m \in \mathbb{Z}}$.
8. Prove or disprove (Compare these with Abel's test):
(a) Let $b_{k} \rightarrow 0$. Then $\sum_{k=1}^{\infty} a_{k}<\infty \Longrightarrow \sum_{k=1}^{\infty} a_{k} b_{k}<\infty$.
(b) Let $b_{k} \rightarrow b \neq 0$. Then $\sum_{k=1}^{\infty} a_{k}<\infty \Longrightarrow \sum_{k=1}^{\infty} a_{k} b_{k}<\infty$.
