1. Let $f_{n}(x)=\frac{x^{n}}{1+x^{n}}$ on $[0,1]$.
(a) Prove that f_{n} converges uniformly to 0 on $[0, \epsilon]$ for all $\epsilon \in(0,1)$.
(b) Does f_{n} converge uniformly on $[0,1]$? Prove or disprove.
2. Prove that if f_{n} converges uniformly on (a, b) and $f_{n}(a)$ and $f_{n}(b)$ converge, then f_{n} converges uniformly on $[a, b]$.
3. Let f be uniformly continuous on \mathbb{R} and $f_{n}(x):=f\left(x+\frac{1}{n}\right)$ for all $n \in \mathbb{N}$. Prove that f converges uniformly to f on \mathbb{R}.
4. Find an example of each and prove it:
(a) $\sum_{k=1}^{\infty} f_{k}(x)$ converges pointwise on E, but not absolutely pointwise on E.
(b) $\sum_{k=1}^{\infty} f_{k}(x)$ converges uniformly on E, but not absolutely pointwise on E.
(c) $\sum_{k=1}^{\infty} f_{k}(x)$ converges absolutely pointwise on E, but not uniformly on E.
(d) $\sum_{k=1}^{\infty} f_{k}(x)$ converges absolutely uniformly on E, but the Weierstrass M-test fails.
5. Let $f_{n}(x)=\left(1+\frac{x}{n}\right)^{n}$ on $[0, R]$, for $R>0$. Prove that f_{n} converges uniformly to e^{x} on $[0, R]$.
6. Find $f_{n} \in \mathcal{C}[0,1]$ with $\left\|f_{n}\right\|_{\infty}=1$ such that no subsequence of $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly on $[0,1]$.
7. Let $f_{n}(x)=\frac{n x}{1+n x}$ on $[0,1]$.
(a) Find the pointwise limit, $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Check if $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(x) d x$.
(c) Does f_{n} converge uniformly to f on $[0,1]$?
8. Let $f_{n} \in \mathcal{C}(E)$ for some $E \subset \mathbb{R}$ such that f_{n} converges to f uniformly on E. Prove that

$$
f_{n}\left(x_{n}\right) \rightarrow f(x) \quad \text { for } \quad x_{n} \rightarrow x \in E .
$$

