1. Let $f_n(x) = \frac{x^n}{1+x^n}$ on [0,1].

- (a) Prove that f_n converges uniformly to 0 on $[0, \epsilon]$ for all $\epsilon \in (0, 1)$.
- (b) Does f_n converge uniformly on [0, 1]? Prove or disprove.
- 2. Prove that if f_n converges uniformly on (a, b) and $f_n(a)$ and $f_n(b)$ converge, then f_n converges uniformly on [a, b].
- 3. Let f be uniformly continuous on \mathbb{R} and $f_n(x) := f(x + \frac{1}{n})$ for all $n \in \mathbb{N}$. Prove that f converges uniformly to f on \mathbb{R} .
- 4. Find an example of each and prove it:
 - (a) $\sum_{k=1}^{\infty} f_k(x)$ converges pointwise on E, but not absolutely pointwise on E.
 - (b) $\sum_{k=1} f_k(x)$ converges uniformly on E, but not absolutely pointwise on E.
 - (c) $\sum_{k=1}^{\infty} f_k(x)$ converges absolutely pointwise on E, but not uniformly on E.
 - (d) $\sum_{k=1} f_k(x)$ converges absolutely uniformly on E, but the Weierstrass M-test fails.
- 5. Let $f_n(x) = (1 + \frac{x}{n})^n$ on [0, R], for R > 0. Prove that f_n converges uniformly to e^x on [0, R].
- 6. Find $f_n \in \mathcal{C}[0,1]$ with $||f_n||_{\infty} = 1$ such that no subsequence of $\{f_n\}_{n \in \mathbb{N}}$ converges uniformly on [0,1].
- 7. Let $f_n(x) = \frac{nx}{1+nx}$ on [0,1].

(a) Find the pointwise limit, $f(x) = \lim_{n \to \infty} f_n(x)$.

- (b) Check if $\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 \lim_{n \to \infty} f_n(x) \, dx.$
- (c) Does f_n converge uniformly to f on [0, 1]?
- 8. Let $f_n \in \mathcal{C}(E)$ for some $E \subset \mathbb{R}$ such that f_n converges to f uniformly on E. Prove that

$$f_n(x_n) \to f(x) \quad \text{for} \quad x_n \to x \in E.$$