Read: Rudin, Chapter 1. Do not wory about understanding every detail, but get a good sense of the big ideas.

- 1. If r is rational $(r \neq 0)$ and x is irrational, prove that r + x and rx are irrational. Do not make any references to Dedekind cuts assume that x being irrational means only that it cannot be written as a fraction of two integers.
- 2. Prove Proposition 1.15 in Rudin: The axioms for multiplication (see p. 5) imply the following statements.
 - (a) If $x \neq 0$ and xy = xz then y = z.
 - (b) If $x \neq 0$ and xy = x then y = 1.
 - (c) If $x \neq 0$ and xy = 1 then y = 1/x.
 - (d) If $x \neq 0$ then 1/(1/x) = x.
- 3. Let *E* be a nonempty subset of an ordered set. Suppose α is a lower bound of *E* and β is an upper bound of *E*. Prove that $\alpha \leq \beta$.
- 4. Let A be a nonempty set of real numbers which is bounded below. Let -A be the set of all numbers -x, where $x \in A$. Prove that $\inf A = -\sup(-A)$.
- 5. For any real number $a \in \mathbb{R}$ and nonempty $B \subset \mathbb{R}$, define the set $a + B = \{a + b : b \in B\}$. Show that if B is bounded above, then $\sup(a + B) = a + \sup B$.
- 6. Let u be an upper bound of a non-empty set A in \mathbb{R} . Prove that u is the supremum of A if and only if for all $\epsilon > 0$, there is an $a \in A$ such that $u \epsilon < a$. Formulate (but do not prove) an analogous statement for the infimum of A.
- 7. Let A, B be subsets of \mathbb{R} that are bounded above, and let $A + B = \{a + b : a \in A, b \in B\}$. Show that

$$\sup(A+B) = \sup A + \sup B.$$