Read: Rudin, Chapter 1. Do not wory about understanding every detail, but get a good sense of the big ideas.

1. If r is rational $(r \neq 0)$ and x is irrational, prove that $r+x$ and $r x$ are irrational. Do not make any references to Dedekind cuts - assume that x being irrational means only that it cannot be written as a fraction of two integers.
2. Prove Proposition 1.15 in Rudin: The axioms for multiplication (see p. 5) imply the following statements.
(a) If $x \neq 0$ and $x y=x z$ then $y=z$.
(b) If $x \neq 0$ and $x y=x$ then $y=1$.
(c) If $x \neq 0$ and $x y=1$ then $y=1 / x$.
(d) If $x \neq 0$ then $1 /(1 / x)=x$.
3. Let E be a nonempty subset of an ordered set. Suppose α is a lower bound of E and β is an upper bound of E. Prove that $\alpha \leq \beta$.
4. Let A be a nonempty set of real numbers which is bounded below. Let $-A$ be the set of all numbers $-x$, where $x \in A$. Prove that $\inf A=-\sup (-A)$.
5. For any real number $a \in \mathbb{R}$ and nonempty $B \subset \mathbb{R}$, define the set $a+B=\{a+b: b \in B\}$. Show that if B is bounded above, then $\sup (a+B)=a+\sup B$.
6. Let u be an upper bound of a non-empty set A in \mathbb{R}. Prove that u is the supremum of A if and only if for all $\epsilon>0$, there is an $a \in A$ such that $u-\epsilon<a$. Formulate (but do not prove) an analogous statement for the infimum of A.
7. Let A, B be subsets of \mathbb{R} that are bounded above, and let $A+B=\{a+b: a \in A, b \in B\}$. Show that

$$
\sup (A+B)=\sup A+\sup B
$$

