Read: Rudin, Chapter 2, pages 36–40.

1. Let A_1, A_2, A_3, \ldots be subsets of a metric space.

(a) If
$$B_n = \bigcup_{i=1}^n A_i$$
, prove that $\bar{B}_n = \bigcup_{i=1}^n \bar{A}_i$, for $n = 1, 2, 3, \dots$
(b) If $B = \bigcup_{i=1}^\infty A_i$, prove that $\bar{B} \supset \bigcup_{i=1}^\infty \bar{A}_i$.

- 2. Is every point of every open set $E \subset \mathbb{R}^2$ a limit point of E? Answer the same question for closed sets in \mathbb{R}^2 .
- 3. Let E° denote the set of all interior points of a set E, which we call the *interior* of E.
 - (a) Prove that E° is always open.
 - (b) Prove that E is open if and only if $E^{\circ} = E$.
 - (c) If $G \subset E$ and G is open, prove that $G \subset E^{\circ}$.
 - (d) Prove that the complement of E° is the closure of the complement of E.
 - (e) Do E and \overline{E} always have the same interiors? Prove or disprove.
 - (f) Do E and E° always have the same closures? Prove or disprove.
- 4. Let X be an infinite set. For $p, q \in X$, define

$$d(p,q) = \begin{cases} 1 & \text{if } p \neq q \\ 0 & \text{if } p = q. \end{cases}$$

Prove that this is a metric. Which subsets of the resulting metric space are open? Which are closed? Which are compact? Prove all your claims.

5. Let $K = \{1/n : n \in \mathbb{N}\} \cup \{0\}$. Prove that K is compact.