Read: Rudin, Chapter 2, pages 41–43.

- 1. Regard \mathbb{Q} , the set of all rational numbers, as a metric space with d(p,q) = |p-q|. Let E be the set of all $p \in \mathbb{Q}$ such that $2 < p^2 < 3$. Show that E is closed and bounded in \mathbb{Q} , but that E is not compact. Is E open in \mathbb{Q} ? [*Hint*: Use Theorems 2.30 and 2.33 in Rudin.]
- 2. Let *E* be the set of all $x \in [0, 1]$ whose decimal expansion contains only the digits 4 and 7. Is *E* countable? Is *E* dense in [0, 1]? Is *E* compact? Is *E* perfect? Prove all of your claims. [A set *E* is *perfect* if it is closed, and every point is a limit point of *E*.]
- 3. Consider the set $S = \mathbb{Q} \cap [0, 1]$, which we know is countable, Enumerate S via a function $f \colon \mathbb{N} \to \mathbb{Q}$, so that $S = \{f(1), f(2), \ldots\}$. Define the set $P \subset S$

$$P = \{0.d_1d_2d_3... \in S : d_i \neq f(n)_n\},\$$

where $0.d_1d_2d_3...$ is the base-10 decimal representation of a number (assuming it does not end in an infinite string of 9s), and $f(n)_n$ is the n^{th} digit of the decimal representation of f(n). By construction, $P \cap \mathbb{Q} = \emptyset$. Prove that P is perfect, and deduce that there are nonempty perfect sets in \mathbb{R} that contain no rational number?

- 4. Let X be a metric space.
 - (a) If A and B are disjoint closed sets in X, prove that they are separated.
 - (b) Prove the same for disjoint open sets.
 - (c) Fix $p \in X$, $\delta > 0$, and define A to be the set of all $q \in X$ for which $d(p,q) < \delta$. Define B similarly, but with > in place of <. Prove that A and B are separated.
 - (d) Prove that every connected metric space with at least two points is uncountable. [*Hint*: Use (c).]
- 5. Are closures and interiors of connected sets always connected? Prove or disprove each assertation.