Read: Rudin, Chapter 3, pages 47-65.

1. For this problem, consider the metric space $X=\mathbb{C}$.
(a) Show that $||z|-|w|| \leq|z-w|$ for all $z, w \in \mathbb{C}$. [Hint: By the triangle inequality, $|z|=|z-w+w| \leq|z-w|+|w|$.]
(b) Prove that convergence of $\left\{z_{n}\right\}$ implies convergence of $\left\{\left|z_{n}\right|\right\}$. Show by example that the converse need not hold.
2. Put $p_{1}=\sqrt{2}$ and recursively define a sequence $\left\{p_{n}\right\}$ by

$$
p_{n+1}=\sqrt{2+\sqrt{p_{n}}} \quad(n=1,2,3, \ldots) .
$$

Prove that $\left\{p_{n}\right\}$ is monotonically increasing and bounded above by 2 , from which we can deduce that it converges.
3. Consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{1}=0, \quad a_{2 m}=\frac{a_{2 m-1}}{2}, \quad a_{2 m+1}=\frac{1}{2}+a_{2 m} .
$$

(a) Write out the first 10 terms of this sequence. Make a conjecture for what $a_{2 n}$ and $a_{2 n+1}$ are for all n.
(b) Prove your conjectures by induction.
(c) Find all subsequential limits of $\left\{a_{n}\right\}$, and determine $\lim \sup a_{n}$ and $\lim \inf a_{n}$.
4. For any two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ of real numbers, prove that

$$
\limsup \left(a_{n}+b_{n}\right) \leq \limsup a_{n}+\limsup b_{n},
$$

provided that the sum on the right is not of the form $\infty-\infty$. Give an explicit example of where equality does not hold.
5. If $\sum a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\sum a_{n} b_{n}$ converges. [Hint: Define $c_{n}=\left|b_{n}-b\right|$, where $b_{n} \rightarrow b$ (how do you know that b exists?) and use the comparison test.] Additionally, give examples to show how this can fail if either the "monotonic" or "bounded" condition is dropped from the hypothesis.
6. Let $\left\{p_{n}\right\}$ be a sequence of real numbers, and define its arithmetic means σ_{n} by

$$
\sigma_{n}=\frac{p_{0}+p_{1}+\cdots+p_{n}}{n+1} \quad(n=0,1,2, \ldots) .
$$

(a) If $\lim p_{n}=p$, prove that $\lim \sigma_{n}=p$.
(b) Construct a sequence $\left\{p_{n}\right\}$ which does not converge, although $\lim \sigma_{n}=0$.
(c) Can it happen that $p_{n}>0$ for all n and that $\lim \sup p_{n}=\infty$, although $\lim \sigma_{n}=0$?

