Read: Rudin, Chapter 4.

- 1. Let f and g be continuous mappings of a metric space X into a metric space Y, and let E be a dense subset of X.
 - (a) Prove that f(E) is dense in f(X).
 - (b) If g(p) = f(p) for all $p \in E$, prove that g(p) = f(p) for all $p \in X$. (In other words, a continuous mapping is determined by its values on a dense subset of its domain.)
- 2. Let $f: X \to Y$ and $g: Y \to Z$ be uniformly continuous between metric spaces.
 - (a) Prove that if $\{x_n\}$ is a Cauchy sequence in X, then $\{f(x_n)\}$ is Cauchy in Y.
 - (b) Prove that $g \circ f$ is uniformly continuous.
- 3. Prove the following fixed point theorem: If $f: [0,1] \to [0,1]$ is continuous, then f(x) = x for at least one $x \in [0,1]$. [*Hint*: Consider the function g(x) := f(x) x.]
- 4. Every $x \in \mathbb{Q}$ can be written as x = m/n, where n > 0, and m and n are integers with no common divisors. When x = 0, we take n = 1. Consider the real-valued function f defined by

$$f(x) = \begin{cases} 0 & x \notin \mathbb{Q}, \\ 1/n & x = m/n \end{cases}$$

Prove that f is continuous at every irrational point, and that f has a *simple discontinuity* at every rational point.