MthSc 453: Real Analysis (Summer I 2012) Midterm 2 June 15, 2012

				•	
NAME:	Ka.				
	11-24				

Instructions

- Exam time is 75 minutes.
- You may not use notes or books.
- Calculators are not allowed.
- Show your work. Partial credit will be given.

Question	Points Earned	Maximum Points
1		14
2		16
3		20
4		25
5		10
6		15
Total		100

Student to your left:

Student to your right:

1. (14 points) Let X be a metric space. Recall that a set G is open in X if every point of G is an interior point, and that a set F is closed in X if it contains all of its limit points. The following classic theorem describes how open and closed sets are related:

A set E is open if and only if its complement E^c is closed.

Prove one direction of this theorem. (That is, prove (i) E open $\Longrightarrow E^c$ closed, or prove (ii) E closed $\Longrightarrow E^c$ open.)

(=)) Suppose E is open, and take XEE.

Then 3 Nr(x) CE, since x is interior.

This mens $N_r(x) \cap E^c = \emptyset$, then x is not a limit point of E^c . So E^c contains all of its limit points $\Rightarrow E^c$ is closed.

- 2. (16 points) Let X be a metric space. For each of the following statements, decide if it is true of false. For each false statement, give an explicit example showing how can fail.
 - (a) For any collection $\{G_{\alpha}\}$ of open sets, $\bigcup G_{\alpha}$ is open.

True

(b) For any collection $\{F_{\alpha}\}$ of closed sets, $\bigcup F_{\alpha}$ is closed.

False. Consider Fn = [n, 1- n] for n=3, 4,5,...

Then $\tilde{\mathbb{C}}$ $F_n = (0,1)$

(c) For any collection $\{G_{\alpha}\}$ of open sets, $\bigcap G_{\alpha}$ is open.

False. Consider Gn = (-1, 1) for n=1,3,3...

(d) For any collection $\{F_{\alpha}\}$ of closed sets, $\bigcap F_{\alpha}$ is closed.

- 3. (20 points) Let $X = \mathbb{R}$.
 - (a) Prove that the set $K = \{1/n : n \in \mathbb{N}\} \cup \{0\}$ is compact, without using the Heine-Borel theorem. (That is, prove that every open cover of K has a finite subcover.)

Ut
$$\{U_{k}\}$$
 be an open cover of K , and say U_{0} contains 0 . Then $\exists N_{r}(0) \in U_{0}$ for some r , and so if $n > r$, $f \in N_{r}(0)$.

Thus Uo contains all but finitely many points of K, so there is clearly a finite subcorr.

[For each Xi \in K \(NU_0^c \), take some Ui containing Xi.

Thu \{ Uo, Ui, ..., Un\} is a finite subcorr.

(b) Prove that the set $A = \{1/n : n \in \mathbb{N}\}$ is *not* compact, without using the Heine-Borel theorem. (That is, describe an open cover that has no finite subcover.)

Smee each 1/2 is isolated, consider day Un st.

Un A = {1/2}.

Clearly, {Un: n+1N} covers A and has no finite subcover. Thus A is not compact. []

Written by M. Macauley

- 4. (25 points) Let X be a metric space, and $\{x_n\}$ a sequence.
 - (a) (3 points each) Complete the following definitions.
 - (i) The sequence $\{x_n\}$ converges to $x \in X$ if ...

(ii) The sequence $\{x_n\}$ is a Cauchy sequence if ...

(b) (12 points) One of these two conditions implies the other, but not vice-versa. State and prove the correct implication. For the false implication, give an example to show how it can fail.

$$(i) \Rightarrow (ii)$$

$$d(x_n, x_m) \in d(x_n, x) + d(x, x_m) < \frac{5}{2} + \frac{5}{2} = \varepsilon$$

Note that (ii) \$\(\frac{1}{2}\) (i).

(c) (2 points) Define what it means for a metric space X to be complete.

X is complete if every Cauchy sequence Converges

- (d) (1 point each) Which of the following metric spaces are complete? (No proof needed.)
 - (i) Q; Not complete (See Part (b) for an example.)
 - (ii) R; Complete
 - (iii) C; Complete
 - (iv) R, with the discrete metric;

Conflite

(v) A finite metric space X.

Complete

5. (10 points) Let $\{a_n\}$ be a monotonically decreasing sequence bounded below. That is, $a_1 \geq a_2 \geq a_3 \geq \cdots \geq L$, for some $L \in \mathbb{R}$. Prove that a_n converges. [Hint: First, make a conjecture about what the limit is.]

Claim: {an} converges to [a:= inf an]

Proof: Fix E70.

Since a= int an, 3 some an st |an-a| < E.

Since {an} is monotonically decr, if n > N,

then

| a - an | = | a - an | < | a - an | < \ \ \ \ \.

Thus anda.

6. (15 points) Suppose you have a friend taking MthSc 453 who is trying to understand the concept of limit supremum. Your friend enthulastically writes down the following statement about a sequence $\{s_n\}$, and $s^* := \limsup s_n$:

For all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that if $n \geq N$, then $|s^* - s_n| < \epsilon$.

(a) Explain in simple terms what is wrong with your friend's claim, and give an explicit example of where it fails. Then, re-write it (only modifying the part after "such that") so it is correct.

Problem: The choice statement is saying that {sh} converges to st. This need not be the case - {sn}

could have other smaller subsequential limits,

Correction: HE TO, B NEN S.t. if NON, then Sa-SYCE

(b) There is actually a special case of when the statement above holds. What additional assumption about $\{s_n\}$ is needed for this to happen?

[Sn] Converger

Written by M. Macauley