MthSc 453 (Summer I 2012)

Midterm 2

MthSc 453: Real Analysis (Summer I 2012)
Midterm 2
June 15, 2012

NAME: |< 2y

Instructions

e Exam time is 75 minutes.
¢ You may not use notes or books.
e Calculators are not allowed.

¢ Show your work. Partial credit will be given.

Question | Points Earned | Maximum Points
1 14

2 16

3 20

4 25

5 10

6 15

Total 100

Student to your left:

Student to your right:
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MthSc 453 (Summer I 2012) - R , Midterm 2

1. (14 points) Let X be a metric space. Recall that a set G is open in X if every point of G is an
interior point, and that a set F is closed in X if it contains all of its limit points. The following
classic theorem describes how open and closed sets are related: ' '

A set E is open if and only if its complement E° is closed.

Prove one direction of this theorem. (That is, prove (i) E open => E° closed, or prove (ii) E closed
== FE*° open.) ‘
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2. (16 points) Let X be a metric space. For each of the following statements, decide if it is true of false.
For each false statement, give an explicit example showing how can fail.

(a) For any collection {Go} of open sets, UGQ is open.
[+

Trve

(b) For any collection {Fy} of closed sets, UFa is closed.
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(c) For any collection {G4} of open sets, ﬂGa is open.

Rlse.  Covdar G(‘&) e azlus.

(d) For any collection {Fy} of closed sets, ﬂFa is closed.
«
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3. (20 points) Let X =R.

(a) Prove that the set K = {1/n: n € N}U{0} is compact, without using'the Heine-Borel theorem.
(That is, prove that every open cover of K has a finite subcover.)
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(b) Prove that the set A = {1/n : n € N} is not compact, without using the Heine-Borel theorem.
(That is, describe an open cover that has no finite subcover.)
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4. (25 points) Let X be a metric space, and {z,} a sequence.

(a) (3 points each) Complete the following definitions.

(i) The sequence {zn} convergestoz € X if ...
¥ez0, AN st azN = d(x, x) <t

(ii) The sequence {zn} is a Cauchy sequence if ...

¥e>o, 3 N st An? N = 0(()('\,""5<5.

(b) (12 points) One of these two conditions implies the other, but not vice-versa. State and prove
the correct implication. For the false implication, give an example to show how it can fail.
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(c) (2 points) Define what it means for a metric space X to be complete.
X is Coﬂ(;ﬂ 1e Qe Cﬁw:tj Sepuence
Con et s

(d) (1 point each) Which of the following metric spaces are complete? (No proof needed.)

(i) Q;

Mot comglte (S bet () Lo an ?JKW‘—Y'(._B

VE ot

(iii) C;

Conglots

(iv) R, with the discrete metric;

CGM,LUG )
———————r
(v) A finite metric space X.

Complete
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5. (10 pomts) Let {an} be a monotonically decreasing sequence bounded below. That is, a; > a2 >
a3z > --- > L, for some L € R. Prove that a, converges. [Hmt First, make a conjecture about what

the hmxt is.]
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6. (15 points) Suppose you have a friend taking MthSc 453 who is trying to understand the concept of

limit supremum. Your friend enthuiastically writes down the following statement about a sequence
{sn}, and 8* := lim sup sp,:

For all € > 0, there exists N € N such that if n > N, then |s* — sp| < €.

(a) Explain in simple terms what is wrong with your friend’s claim, and give an explicit example of
where it fails. Then, re-write it (only modifying the part after “such that”) so it is correct.
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(b) There is actually a special case of when the statement above holds. What additional assumption
about {sn} is needed for this to happen?

{S‘Ai C@V\v-trgg .
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