Topics: PDEs on unbounded domains. Laplace \& Fourier transforms.

1. Recall that the solution to the initial value problem for the heat equation, where $x \in \mathbb{R}$ and $t>0$:
$u_{t}=c^{2} u_{x x}, \quad u(x, 0)=\left\{\begin{array}{ll}1 & |x| \leq 1 \\ 0 & |x|>1\end{array} \quad\right.$ is $\quad u(x, t)=\int_{-\infty}^{\infty} h(x) \frac{1}{\sqrt{4 \pi c^{2} t}} e^{-(x-y)^{2} / 4 c^{2} t} d y$,
where $h(x)=u(x, 0)$. Sketch the heat distribution at $t=0$ and several larger values of t on the same set of axes. Then change variables by setting $z=(y-x) / \sqrt{4 c^{2} t}$ and write the above solution in terms of the Gauss error function, $\operatorname{erf}(z):=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-r^{2}} d r$.
2. Starting with d'Alembert's formula, the general solution to the wave equation on $x \in \mathbb{R}$, solve the following initial value problem:

$$
u_{t t}=c^{2} u_{x x}, \quad u(x, 0)=\frac{1}{1+x^{2} / 4}, \quad u_{t}(x, 0)=0 .
$$

Then repeat for the following IVP:

$$
u_{t t}=c^{2} u_{x x}, \quad u(x, 0)=0, \quad u_{t}(x, 0)=\frac{1}{1+x^{2} / 4} .
$$

Describe what each IVP models. Compare and contrast the differences in the solutions. For each one, sketch the function $u(x, t)$ for $t=0$, and several larger values of t on the same set of axes.
3. Solve the I/BVP for the heat equation on the semi-infinite domain $x>0, t>0$:

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=0, \quad u(x, 0)=1
$$

Write your answer in terms of the erf function. Sketch a graph of $u(x, t)$ at $t=0$ and several larger values of t. What is the long-term behavior?
4. The following I/BVP models what happens to a falling cable that is lying on a table that is suddenly removed:

$$
u_{t t}=c^{2} u_{x x}-g, \quad u(0, t)=0, \quad u(x, 0)=u_{t}(x, 0)=0
$$

Assume that the domain of $u(x, t)$ is $x>0$ and $t>0$. Solve this PDE using Laplace transforms and draw several time snapshots of the solution.
5. Use a Fourier transform to solve the following initial value problem for the inhomogeneous heat equation, where $x \in \mathbb{R}$ and $t>0$:

$$
u_{t}=u_{x x}+h(x, t), \quad u(x, 0)=0 .
$$

6. Use a Fourier transform to solve the following initial value problem for the free Schrödinger equation, where $x \in \mathbb{R}$ and $t>0$:

$$
u_{t}=i u_{x x}, \quad u(x, 0)=e^{-x^{2}}
$$

