Topics: PDEs in other coordinate systems

In the process of solving these problems, you will encounter several ODEs, Sturm-Liouville problems, PDEs, and Fourier series, many of which you have encountered before. You do not need to re-derive the solutions of anything you have previously solved.

1. Let $u(r, \theta)$ be a function defined on the disk of radius R. Consider the following boundary value problem for Laplace's equation in polar coordinates:

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, \quad u(r, \theta+2 \pi)=u(r, \theta), \quad u(R, \theta)=2-3 \cos \theta+5 \sin 2 \theta
$$

(a) Assume that a solution has the form $u(r, \theta)=R(r) T(\theta)$. Plug this back in and seperate variables to get an equation for R and T, including boundary conditions.
(b) Solve the ODEs for $R(r)$ and $T(\theta)$, and determine all possible eigenvalues λ_{n}. Make sure to impose the additional requirement that $R(0)$ exists.
(c) Find the general solution to Laplace's equation in polar coordinates.
(d) Plug in $r=R$ to find the particular solution to this boundary value problem.
2. Let $u(r, \theta, t)$ be a function defined on the disk of radius $R=1$, and for all $t \geq 0$. Consider the following initial/boundary value problem for the heat equation in polar coordinates:

$$
\begin{array}{lll}
u_{t}=c^{2} \Delta u, & u(r, \theta+2 \pi)=u(r, \theta), & u(r, \theta, 0)=1-r^{2}+h(r, \theta) \\
& u(1, \theta, t)=2-3 \cos \theta+5 \sin 2 \theta .
\end{array}
$$

Here, $h(r, \theta)$ denotes the steady-state solution.
(a) What is $h(r, \theta)$?
(b) Make the change of varibles $v(r, \theta, t)=u(r, \theta, t)-h(r, \theta)$, and re-write the PDE above, including the boundary and initial condtions, in terms of v instead of u.
(c) Find the general solution for this homogeneous PDE using separation of variables. Assume that $v(r, \theta, t)=f(r, \theta) g(t)$.
(d) Find the particular solution that satisfies the initial condition.
3. Let $u(r, \theta, t)$ be a function defined on the disk of radius $R=1$, and for all $t \geq 0$. Consider the following initial/boundary value problem for the wave equation in polar coordinates:

$$
\begin{array}{lll}
u_{t t}=c^{2} \Delta u, & u(r, \theta+2 \pi)=u(r, \theta) & u(r, \theta, 0)=1-r^{2} \\
& u(1, \theta, t)=0, & u_{t}(r, \theta, 0)=0 .
\end{array}
$$

(a) Briefly describe, and sketch, a physical situation which this models. Be sure to explain the effect of the boundary conditions and both initial conditions. [Hint: What does the function $u(r, \theta, 0)=1-r^{2}$ look like?]
(b) Assume that there is a solution of the form $u(r, \theta, t)=f(r, \theta) g(t)$. Plug this back in and separate variables to get an ODE for g and a PDE for f. Include boundary conditions for f, and one initial condition for g.
(c) Find the general solution to this BVP.
(d) Find the particular solution that additionally satisfies the initial conditions.
4. Let $u(r, \theta, \phi, t)$ be the temperature of a sphere of radius $R=\pi$. Assume that the initial temperature is constant, and that temperature does not depend on the latitude or longitude. In this case, $u(r, \theta, \phi, t)=u(r, t)$, and the heat equation reduces down to the following:

$$
u_{t}=c^{2}\left(u_{r r}+\frac{2}{r} u_{r}\right), \quad u(\pi, t)=0, \quad u(r, 0)=T_{0}
$$

There is an implied boundary condition at $r=0$, that $u(0, t)$ is finite.
(a) Assume that there is a solution of the form $u(r, t)=f(r) g(t)$. Separate variables to get two equation, and ODE for g, and a (singular) Sturm-Liouville problem for f.
(b) Solve the Sturm-Liouville problem for f. [Hint: One way would be to use the power series method. However, a much easier way is to define $y(r)=r f(r)$, and re-write the problem in terms of y.]
(c) Write the general solution to this PDE.
(d) Find the particular solution that additionally satisfies the initial condition. Leave the formulas for coefficients in terms of integrals; no need to solve them.
5. Consider a sphere of radius $R=1$, and suppose that $u(r, \phi)$ represents a potential the depends only on the radius $r \in[0,1]$ and latitude $\phi \in[0, \pi]$. In this problem, we will solve Laplace's equation under these conditions. The boundary value problem is

$$
u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2} \sin \phi}\left(\sin \phi u_{\phi}\right)_{\phi}=0, \quad u(1, \phi)=f(\phi) .
$$

(a) Assume $u(r, \phi)=R(r) Y(\phi)$, and derive the following two equations

$$
1\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}=\lambda y, \quad\left(r^{2} R^{\prime}\right)^{\prime}=\lambda R
$$

where $x=\cos \phi$ for $-1<x<1$ and $y(x)=Y\left(\cos ^{-1}(x)\right)$.
(b) The equation for $y(x)$ may look familiar - it is Legendre's equation (see HW 4, 6, and 9). Recall that it has bounded, continuous solutions on $[-1,1]$ when

$$
\lambda_{n}=n(n+1), \quad y_{n}(x)=P_{n}(x), \quad n=0,1,2, \ldots .
$$

These are the eigenvalues and eigenfunctions of the related (singular) Sturm-Liouville problem (see HW 9). Carry out the details of deriving the general solution to Laplace's equation, which will be

$$
u(r, \phi)=\sum_{n=0}^{\infty} c_{n} r^{n} P_{n}(\cos \phi), \quad \text { where } \quad c_{n}=\frac{1}{\left\|P_{n}\right\|^{2}} \int_{0}^{\pi} f(\phi) P_{n}(\cos \phi) \sin \phi d \phi
$$

(c) If $f(\phi)=\sin \phi$, find an approximate, fourth-order solution. That is, truncate it after the $n=4$ term. Hint: The Legendre polynomials can be derived from the following formula:

$$
P_{n}(x)=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right] .
$$

