MTHSC 851/852 (Abstract Algebra)
 Dr. Matthew Macauley
 HW 12

Due Monday, September 7, 2009
(1) (a) Let R be a UFD (unique factorization domain, commutative), and let d a non-zero element in R. Prove that there are only finitely many principal ideals in R that contain d.
(b) Give an example of a UFD R and a nonzero element $d \in R$ such that there are infinitely many ideals in R containing d. [No proof is required for this part; however, you must describe not only R and d, but also an infinite family of ideals containing d.]
(2) Suppose $f(x)=1+x+x^{2}+\cdots+x^{p-1}$, where $p \in \mathbb{Z}$ is prime.
(a) Show that f is irreducible in $\mathbb{Q}[x]$. [Hint: Write $f(x)=\left(x^{p}-1\right) /(x-1)$, and substitute $x+1$ for $x]$.
(b) Show that $\binom{p}{k}=\sum_{i=1}^{k+1}\binom{p-i}{p-k-1}$ for all $k<p$.
(3) (a) All of the following rings R_{i}, for $i=1, \ldots, 6$ are additionally \mathbb{C}-vector spaces. In each case, compute the vector space dimension by explicitly giving a basis for R_{i} over \mathbb{C} in each case.
$R_{1}=\mathbb{C}[x] /\left(x^{3}-1\right)$
$R_{2}=\mathbb{C} \times \mathbb{C} \times \mathbb{C}$
$R_{3}=$ the ring of upper triangular 2×2 matrices over \mathbb{C}
$R_{4}=\mathbb{C}[x] /(x-1) \times \mathbb{C}[x] /(x+i) \times \mathbb{C}[x] /(x-i)$
$R_{5}=\mathbb{C}[x] /\left(x^{2}+1\right) \times \mathbb{C}[x] /(x-1)$
$R_{6}=\mathbb{C}[x] /(x+1)^{2} \times \mathbb{C}[x] /(x-1)$
(b) Partition the set $\left\{R_{1}, \ldots, R_{6}\right\}$ into isomorphism classes and prove your answer. [Hint: Apply the Chinese Remainder Theorem to $\mathbb{C}[x]$.
(4) (The Euclidean Algorithm). Suppose R is a Euclidean domain, $a, b \in R$ and $a b \neq 0$. Write

$$
\begin{aligned}
a & =b q_{1}+r_{1}, & d\left(r_{1}\right)<d(b), \\
b & =r_{1} q_{2}+r_{2}, & d\left(r_{2}\right)<d\left(r_{1}\right), \\
r_{1} & =r_{2} q_{3}+r_{3}, & d\left(r_{3}\right)<d\left(r_{2}\right), \\
\vdots & & \\
r_{k-2} & =r_{k-1} q_{k}+r_{k}, & d\left(r_{k}\right)<d\left(r_{k-1}\right) .
\end{aligned}
$$

with all $r_{i}, q_{j} \in R$. Show that $r_{k}=(a, b)$ and "solve" for r_{k} in terms of a and b, thereby expressing (a, b) in the form $u a+v b$ with $u, v \in R$.
(5) Use the Euclidean Algorithm to find $d=(a, b)$ and to write $d=u a+v b$ in the following cases:
(a) $a=29041, b=23843, R=\mathbb{Z}$;
(b) $a=x^{3}-2 x^{2}-2 x-3, b=x^{4}+3 x^{3}+3 x^{2}+2 x, R=\mathbb{Q}[x]$;
(c) $a=7-3 i, b=5+3 i, R=R_{-1}$.
(6) (a) Solve the congruences.

$$
x \equiv 1 \quad(\bmod 8), \quad x \equiv 3 \quad(\bmod 7), \quad x \equiv 9 \quad(\bmod 11)
$$

simultaneously for x in the ring \mathbb{Z} of integers.
(b) Solve the congruences.

$$
x \equiv i \quad(\bmod i+1), \quad x \equiv 1 \quad(\bmod 2-i), \quad x \equiv 1+i \quad(\bmod 3+4 i)
$$

simultaneously for x in the ring R_{-1} of Gaussian integers.
(c) Solve the congruences.
$f(x) \equiv 1 \quad(\bmod x-1), \quad f(x) \equiv x \quad\left(\bmod x^{2}+1\right), \quad f(x) \equiv x^{3} \quad(\bmod x+1)$
simultaneously for $f(x)$ in $F[x]$, where F is a field in which $1+1 \neq 0$.

