MTHSC 851/852 (Abstract Algebra)
 Dr. Matthew Macauley
 HW 13

Due Monday, September 21, 2009
(1) Show that $[\mathbb{A}: \mathbb{Q}]$ is infinite.
(2) Let F be a field extension of \mathbb{Q} such that $[F: \mathbb{Q}]=2$. Prove that there is a unique square-free integer m such that $F=\mathbb{Q}(\sqrt{m})$.
(3) Let $S=\{\sqrt{m} \mid m \in \mathbb{N}$ is prime $\}$.
(a) Show that $\mathbb{Q}[S]=\mathbb{Q}(S)$.
(b) Prove that for $n \in \mathbb{N} \cup\{0\}$ and any choice of $n+1$ distinct elements $a_{1}, \ldots, a_{n+1} \in S$, $a_{n+1} \notin \mathbb{Q}\left(a_{1}, \ldots, a_{n}\right)$.
(c) Deduce that for any finite subset $T \subseteq S$ we have $[\mathbb{Q}(T): \mathbb{Q}]=2^{|T|}$. Use this fact to argue that $[\mathbb{Q}(S): \mathbb{Q}]$ is infinite.
(d) Deduce further that $\mathbb{Q}(T) \neq \mathbb{Q}(U)$, whenever T and U are distinct subsets of S.
(4) Let $F \subseteq \mathbb{C}$ be a splitting field for $x^{3}-2$ over \mathbb{Q}.
(a) Describe F, i.e. give some generators for a field extension of \mathbb{Q}.
(b) Compute the dimension of F over \mathbb{Q}. Justify your claims.
(c) Is F isomorphic to a subfield of \mathbb{R} ? Prove or disprove.
(5) Let $a_{1}, a_{2} \in \mathbb{C}$ be any two numbers which are algebraic over \mathbb{Q}. Show that if there exists an isomorphism $\phi: \mathbb{Q}\left(a_{1}\right) \rightarrow \mathbb{Q}\left(a_{2}\right)$, leaving \mathbb{Q} elementwise fixed and satisfying $\phi\left(a_{1}\right)=a_{2}$, then a_{1} and a_{2} have the same minimal polynomial over \mathbb{Q}.
(6) Fix a field F, and define a category \mathfrak{C}_{F} whose objects are the extension fields of F. Define morphisms in \mathfrak{C}_{F} in such a fashion that the algebraic closure \bar{F} of F arises as the solution of a universal mapping problem. Carefully formulate this problem and prove all of your claims.

