MTHSC 851/852 (Abstract Algebra) Dr. Matthew Macauley HW 13 Due Monday, September 21, 2009

- (1) Show that $[\mathbb{A} : \mathbb{Q}]$ is infinite.
- (2) Let F be a field extension of \mathbb{Q} such that $[F : \mathbb{Q}] = 2$. Prove that there is a unique square-free integer m such that $F = \mathbb{Q}(\sqrt{m})$.
- (3) Let $S = \{\sqrt{m} \mid m \in \mathbb{N} \text{ is prime}\}.$
 - (a) Show that $\mathbb{Q}[S] = \mathbb{Q}(S)$.
 - (b) Prove that for $n \in \mathbb{N} \cup \{0\}$ and any choice of n+1 distinct elements $a_1, \ldots, a_{n+1} \in S$, $a_{n+1} \notin \mathbb{Q}(a_1, \ldots, a_n)$.
 - (c) Deduce that for any finite subset $T \subseteq S$ we have $[\mathbb{Q}(T) : \mathbb{Q}] = 2^{|T|}$. Use this fact to argue that $[\mathbb{Q}(S) : \mathbb{Q}]$ is infinite.
 - (d) Deduce further that $\mathbb{Q}(T) \neq \mathbb{Q}(U)$, whenever T and U are distinct subsets of S.
- (4) Let $F \subseteq \mathbb{C}$ be a splitting field for $x^3 2$ over \mathbb{Q} .
 - (a) Describe F, i.e. give some generators for a field extension of \mathbb{Q} .
 - (b) Compute the dimension of F over \mathbb{Q} . Justify your claims.
 - (c) Is F isomorphic to a subfield of \mathbb{R} ? Prove or disprove.
- (5) Let $a_1, a_2 \in \mathbb{C}$ be any two numbers which are algebraic over \mathbb{Q} . Show that if there exists an isomorphism $\phi : \mathbb{Q}(a_1) \to \mathbb{Q}(a_2)$, leaving \mathbb{Q} elementwise fixed and satisfying $\phi(a_1) = a_2$, then a_1 and a_2 have the same minimal polynomial over \mathbb{Q} .
- (6) Fix a field F, and define a category \mathfrak{C}_F whose objects are the extension fields of F. Define morphisms in \mathfrak{C}_F in such a fashion that the algebraic closure \overline{F} of F arises as the solution of a universal mapping problem. Carefully formulate this problem and prove all of your claims.