MTHSC 851/852 (Abstract Algebra)
 Dr. Matthew Macauley
 HW 14
 Due Friday, October 9, 2009

(1) Prove Proposition 2.6 from lecture:
(a) If $F \subseteq E \subseteq K$ and E is stable, then $\mathscr{G} E \triangleleft G$.
(b) If $H \triangleleft G$, then $\mathscr{F} H$ is stable.
(2) For each field extension, compute the degree, give a basis, and find the Galois group.
(a) $\mathbb{Q}(\sqrt[4]{2})$ over \mathbb{Q}
(b) $\mathbb{Q}(\sqrt{2}, \sqrt{3}, i)$ over \mathbb{Q}
(c) $\mathbb{Q}(\sqrt[3]{2}, \omega)$ over \mathbb{Q}, where ω is a primitive third root of unity.
(d) $\mathbb{Q}(\omega)$ over \mathbb{Q}, where ω is a primitive $n^{\text {th }}$ root of unity.
(e) A degree- n extension of a finite field $\mathbb{F}_{q}\left(\right.$ where $\left.q=p^{k}\right)$, over \mathbb{F}_{p}.
(3) Let $\alpha=\sqrt{3}+\sqrt[3]{2} \in \mathbb{R}$ and $K=\mathbb{Q}(\alpha)$.
(a) Find $[K: \mathbb{Q}]$.
(b) Let $f(x)$ be the minimal polynomial for α over \mathbb{Q}, and G be the Galois group of $f(x)$ over \mathbb{Q}. Find the order of G.
(4) Suppose that $F \subseteq K$ is a field extension of degree $n<\infty$ and E is any field containing F.
(a) Prove that there are at most n distinct F-homomorphisms $\varphi: K \rightarrow E$ (i.e., $\varphi(x)=x$ for all $x \in F)$.
(b) Show that if E is algebraically closed, there exists at least one F-homomorphism $K \rightarrow E$.
(c) Show that if $n=p$ is prime, then there need only exist one F-homomorphism $K \rightarrow E$.
(5) Let K / F be a Galois extension of degree 2^{n}, and suppose that $\operatorname{char}(F) \neq 2$. Show that there exists a chain of intermediate subfields

$$
F=M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M_{n-1} \subseteq M_{n}=K
$$

such that $M_{i}=F\left(a_{i}\right)$, where $a_{i}^{2} \in M_{i-1}$.
(6) Prove that $(\mathbb{Q},+)$ is not isomorphic to the Galois group of any algebraic field extension

