MTHSC 851/852 (Abstract Algebra) Dr. Matthew Macauley HW 14 Due Friday, October 9, 2009

- (1) Prove Proposition 2.6 from lecture:
 - (a) If $F \subseteq E \subseteq K$ and E is stable, then $\mathscr{G}E \lhd G$.
 - (b) If $H \lhd G$, then $\mathscr{F}H$ is stable.
- (2) For each field extension, compute the degree, give a basis, and find the Galois group.
 (a) Q(⁴√2) over Q
 - (b) $\mathbb{Q}(\sqrt{2},\sqrt{3},i)$ over \mathbb{Q}
 - (c) $\mathbb{Q}(\sqrt[3]{2}, \omega)$ over \mathbb{Q} , where ω is a primitive third root of unity.
 - (d) $\mathbb{Q}(\omega)$ over \mathbb{Q} , where ω is a primitive n^{th} root of unity.
 - (e) A degree-*n* extension of a finite field \mathbb{F}_q (where $q = p^k$), over \mathbb{F}_p .
- (3) Let $\alpha = \sqrt{3} + \sqrt[3]{2} \in \mathbb{R}$ and $K = \mathbb{Q}(\alpha)$.
 - (a) Find $[K : \mathbb{Q}]$.
 - (b) Let f(x) be the minimal polynomial for α over \mathbb{Q} , and G be the Galois group of f(x) over \mathbb{Q} . Find the order of G.
- (4) Suppose that F ⊆ K is a field extension of degree n < ∞ and E is any field containing F.
 (a) Prove that there are at most n distinct F-homomorphisms φ : K → E (i.e., φ(x) = x for all x ∈ F).
 - (b) Show that if E is algebraically closed, there exists at least one F-homomorphism $K \to E$.
 - (c) Show that if n = p is prime, then there need only exist one F-homomorphism $K \to E$.
- (5) Let K/F be a Galois extension of degree 2^n , and suppose that $char(F) \neq 2$. Show that there exists a chain of intermediate subfields

$$F = M_0 \subseteq M_1 \subseteq \dots \subseteq M_{n-1} \subseteq M_n = K$$

such that $M_i = F(a_i)$, where $a_i^2 \in M_{i-1}$.

(6) Prove that $(\mathbb{Q}, +)$ is not isomorphic to the Galois group of any algebraic field extension