MTHSC 851/852 (Abstract Algebra) Dr. Matthew Macauley HW 15

Due Monday, October 19, 2009
(1) (a) Find a primitive element over \mathbb{Q} for $K=\mathbb{Q}(\sqrt{3}, \sqrt[3]{2}) \subseteq \mathbb{C}$.
(b) Find a primitive element over \mathbb{Q} for a splitting field $K \subseteq \mathbb{C}$ for the polynomial $f(x)=x^{4}-5 x^{2}+6$.
(2) Let K / F be a normal field extension and $f(x) \in F[x]$ an irreducible polynomial over F.
(a) Prove that if $f(x)$ splits in K, all zeros of $f(x)$ in K have the same multiplicity.
(a) Now suppose that $f(x)$ does not split in K. Prove that all irreducible factors of $f(x)$ in $K[x]$ have the same degree.
(3) (a) Let F be a field of characteristic zero, and let p be a prime such that $p \mid[K: F]$ for every field extension K / F of finite degree. Prove that $[K: F]$ is a power of p whenever K / F is an extension of finite degree.
(b) Let F be a field, $\mathbb{Q} \subseteq F \subseteq \mathbb{A}$, maximal with respect to $\sqrt{2} \notin F$ (Why does F exist?).
(i) If $F \subseteq K \subseteq \mathbb{A}$, with K normal and finite over F, and $K \neq F$, show that $G=\operatorname{Gal}(K / F)$ is a 2 -group having a unique subgroup of index 2. Conclude that G is cyclic.
(ii) If $F \subseteq L \subseteq \mathbb{A}$ and $[L: F]$ is finite show that L is normal over F and $\operatorname{Gal}(L / F)$ is cyclic. Conclude that the set of finite extensions of F (in \mathbb{A}) is an ascending chain.
(4) Suppose K / F has finite degree and char $F \nmid[K: F]$. Show that K / F is separable.
(5) Let F be a field of characteristic p and $f(x)=x^{p}-a \in F[x]$. Prove that $f(x)$ is either irreducible in $F[x]$ or splits in $F[x]$.
(6) Suppose char $F=p \neq 0$ and K is an extension of F. An element $a \in K$ is called purely inseparable over F if it is a root of a polynomial of the form $x^{p^{k}}-b \in F[x], 0 \leq k \in \mathbb{Z}$.
(a) Show that if $a \in K$ is both separable and purely inseparable over F, then $a \in F$.
(b) Show that the set of all elements of K that are purely inseparable over F constitute a field. Conclude that there is a unique largest "purely inseparable" extension of F within K.

