MTHSC 851/852 (Abstract Algebra) Dr. Matthew Macauley HW 16 Due Friday, November 1st, 2009

- (1) Suppose $F \subseteq E \subseteq K$, $F \subseteq L \subseteq K$, Gal = G(K/F), $J \leq G$, and $H \leq G$ (a) Show that $\mathscr{G}(E \lor L) = \mathscr{G}E \cap \mathscr{G}L$ and $\mathscr{F}(J \lor H) = \mathscr{F}J \cap \mathscr{F}H$.
 - (b) Show that $[E \lor L : F] \leq [E : F][L : F].$
- (2) A field F is called perfect if either char F = 0 or else char F = p and $F = F^p = \{a^p : a \in F\}$.
 - (a) If F is finite show that the map $a \mapsto a^p$ is a monomorphism and conclude that F is perfect.
 - (b) Show that the field $\mathbb{Z}_p(t)$ of rational functions in the indeterminate t is not perfect.
 - (c) Show that a field F is perfect if and only if every finite extension K of F is separable over F, and hence every $f(x) \in F[x]$ is separable.
- (3) Let F be any infinite field and F(x) a simple transcendental extension. Prove that $F \subseteq F(x)$ is a Galois extension.
- (4) If $S \subseteq K$ and K is algebraic over F(S) show that there is a transcendence basis B for K over F with $B \subseteq S$
- (5) (a) Let $G = \text{Gal}(\mathbb{R}/\mathbb{Q})$. If $\phi \in G$ and $a \leq b$ in \mathbb{R} show that $\phi(a) \leq \phi(b)$. [Hint: b a is a square in \mathbb{R} .]
 - (b) Show that G = 1. [Hint: If not choose $\phi \in G$ and $a \in \mathbb{R}$ such that $\phi(a) \neq a$. Choose $b \in \mathbb{Q}$ between a and $\phi(a)$.]
- (6) Let $F \subseteq K$ be a field extension.
 - (a) Suppose K = F(x) is simple transcendental, and show that there are infinitely many intermediate fields $F \subseteq L \subseteq K$.
 - (b) Prove the same conclusion as (a) whenever [K:F] is infinite.