MTHSC 851/852 (Abstract Algebra)
 Dr. Matthew Macauley
 HW 17

Due Monday, November 16th, 2009
(1) If R is a ring with 1 and M is an R-module that is not unitary, show that $R m=0$ for some $m \neq 0$.
(2) If F is a field set $R=F\left[x_{1}, x_{2}, x_{3}, \ldots\right]$, the ring of polynomials in a countably infinite set of distinct indeterminantes. Let I be the ideal $\left(x_{1}, x_{2}, \ldots\right)$ in R. If $M=R$ and $N=I$ show that M is a finitely generated R-module but N is a submodule that is not finitely generated. Is N free?
(3) Suppose L, M and N are R-modules and $f: M \rightarrow N$ is an R-homomorphism. Define $f^{*}: \operatorname{Hom}_{R}(N, L) \rightarrow \operatorname{Hom}_{R}(M, L)$ via $f^{*}(\phi): m \mapsto \phi(f(m))$ for all $\phi \in \operatorname{Hom}_{R}(N, L)$, $m \in M$.
(a) Show that f^{*} is a \mathbb{Z}-homomorphism.
(b) If R is commutative show that f^{*} is an R-homomorphism.
(c) Still assuming that R is commutative, show that if $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ is an exact sequence of R-modules, then for any R-module D, the sequence

$$
0 \rightarrow \operatorname{Hom}_{R}(N, D) \xrightarrow{g^{*}} \operatorname{Hom}_{R}(M, D) \xrightarrow{f^{*}} \operatorname{Hom}_{R}(L, D)
$$ is an exact sequence of abelian groups.

(4) The Five Lemma states that given a diagram of abelian groups

where the rows are exact, and f_{1}, f_{2}, f_{4} and f_{5} are isomorphisms, f_{3} is an isomorphism as well.
(a) Prove the Five Lemma.
(b) Consider the following eight hypotheses:
f_{i} is injective, for $i=1,2,4,5$,
f_{i} is surjective, for $i=1,2,4,5$.
Which of these hypothese suffice to prove that f_{3} is injective? Which suffice to prove that f_{3} is surjective?

