MTHSC 851 (Abstract Algebra) Dr. Matthew Macauley HW 2 Due wednesday Jan. 28, 2009

- (1) Suppose G is finite, p is the smallest prime dividing |G|, $H \leq G$, and [G:H] = p. Show that $H \lhd G$.
- (2) Suppose [G:H] is finite. Show that there is a normal subgroup K of G with $K \leq H$, such that [G:K] is finite.
- (3) Suppose $H \leq S_n$ but $H \not\leq A_n$. Show that $[H : A_n \cap H] = 2$.
- (4) Prove that if H and K are normal subgroups of a group G and HK = G then

$$G/(H \cap K) \cong (G/H) \times (G/K).$$

- (5) Prove the tower law: If $K \leq H \leq G$, then [G:K] = [G:H][H:K].
- (6) Suppose G is finite, $H \leq G$, [G : H] = n, and $|G| \not | n!$. Show that there is a normal subgroup K of G, $K \neq 1$, such that $K \leq H$.
- (7) If $|G| = p^n$ for some prime p, and $1 \neq H \triangleleft G$, show that $H \cap Z(G) \neq 1$.
- (8) If $A, B \leq G$ and $y \in G$ define (A, B)-double coset $AyB = \{ayb \mid a \in A, b \in B\}$. Show that G is the disjoint union of its (A, B)-double cosets. Show that $|AyB| = [A^y : A^y \cap B] \cdot |B|$ if A and B are finite.
- (9) Let G be a group of order 15, which acts on a set S with 7 elements. Show the group action has a fixed point.
- (10) Suppose G acts on S, $x \in G$, and $x \in S$. Show that $\operatorname{Stab}_G(xs) = x \operatorname{Stab}_G(s)x^{-1}$.
- (11) Prove that if G contains no subgroup of index 2, then any subgroup of index 3 is normal in G.
- (12) Suppose that H and K both have finite index in G. Prove that $[G: H \cap K] \leq [G: H][G: K]$.