MTHSC 851 (Abstract Algebra)
 Dr. Matthew Macauley HW 3

Due Thursday Feb. 5, 2009
(1) Let A and B be finite groups of G. Even though $A B$ need not be a subgroup of G, show that $|A B| \cdot|A \cap B|=|A| \cdot|B|$. (Hint: define $\left(a_{1}, b_{1}\right) \sim\left(a_{2}, b_{2}\right)$ iff $a_{1} b_{1}=a_{2} b_{2}$. Prove that \sim is an equivalence relation and examine the equivalence classes.)
(2) If $A \triangleleft G$ and $B \triangleleft G$ show that $G /(A \cap B)$ is isomorphic to a subgroup of $G / A \times G / B$.
(3) Let G be a non-cyclic finite p-group. Show that there is a epimorphism $G \longrightarrow \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
(4) (a) Write out the conjugacy classes explicity in S_{3} and S_{4}.
(b) What are the conjugacy classes in A_{4} ?
(c) Since $\left|A_{4}\right|=12$, any subgroup of order 6 would be normal. Use (b) to show that A_{4} has no subgroup of order 6. Conclude that the converse to Lagrange's Theorem is false.
(d) Find a normal subgroup of order 4 in A_{4}.
(5) If $|G|=p^{n}, p$ a prime, show that G has subgroups $G_{0}, G_{1}, \ldots, G_{n}$ with $1=G_{0} \leq G_{1} \leq$ $\cdots \leq G_{n}=G$ such that $\left[G_{i}: G_{i-1}\right]=p, 1 \leq i \leq n$.
(6) (a) How many subgroups does S_{4} have isomorphic to S_{3} ?
(b) How many subgroups does S_{4} have isomorphic to S_{2} ?
(7) Let G be a group, not necessarily finite, and let $H \leq G$.
(a) Prove that $U=\cap_{x \in G} x H x^{-1}$ is the largest normal subgroup of G contained in H.
(b) Show that no proper subgroup H of A_{5} contains six distinct Sylow 5 -subgroups.
(8) If P is a p-Sylow subgroup of G, show tha $N_{G}\left(N_{G}(P)\right)=N_{G}(P)$.
(9) (a) Show that if $|G|=p q$, where p and q are prime, then G is not simple.
(b) Show that the only simple groups of order less than 36 are of prime order.
(10) Let G be a simple group of order 168. Show that G is a subgroup of A_{8}, the alternating group.
(11) Let G be a group of order 108.
(a) Prove that there exists a nontrivial homomorphism $G \rightarrow S_{4}$.
(b) Show that G is not simple.
(12) Let G be a group of order 90 , and assume that G has no normal Sylow 5 -subgroups.
(a) Show that there is a nontrivial homomorphism $\phi: G \rightarrow S_{6}$.
(b) If $\phi(G) \subseteq A_{6}$, show that ϕ is not injective.
(c) Show that G is not simple.

