MTHSC 851 (Abstract Algebra) Dr. Matthew Macauley HW 4 Due Friday Feb. 13, 2009

- (1) Suppose G is a finite group, $H \triangleleft G$, and P is a p-Sylow subgroup of H. Set $N = N_G(P)$. Show that G = NH.
- (2) Permutation groups G_1 and G_2 acting on sets S_1 and S_2 are called *permutation isomorphic* if there exist an isomorphism $\theta: G_1 \to G_2$ and a bijection $\phi: S_1 \to S_2$ such that $(\theta x)(\phi s) = \phi(xs)$ for all $x \in G_1$ and $s \in S_1$. In other words, the following diagram commutes:

Define two group actions of a group G on itself as follows:

- (i) the action of $x \in G$ is left multiplication by x;
- (ii) the action of $x \in G$ is right multiplication by x^{-1} .

Show that the two actions are permutation isomorphic.

- (3) For each of the following statements, prove or give a counterexample.
 - (i) Let $f: G \to H$ be an epimorphism. Then for any two homomorphisms $g_1, g_2: H \to K$, the equality $g_1 \circ f = g_2 \circ f$ implies that $g_1 = g_2$.
 - (ii) Let $f: G \to H$ be a monomorphism. Then for any two homomorphisms $g_1, g_2: H \to K$, the equality $g_1 \circ f = g_2 \circ f$ implies that $g_1 = g_2$.
 - (iii) Let $g: H \to K$ be an epimorphism. Then for any two homomorphisms $f_1, f_2: G \to H$, the equality $g \circ f_1 = g \circ f_2$ implies that $f_1 = f_2$.
 - (iv) Let $g: H \to K$ be a monomorphism. Then for any two homomorphisms $f_1, f_2: G \to H$, the equality $g \circ f_1 = g \circ f_2$ implies that $f_1 = f_2$.
- (4) If (U, ε) is a universal pair for a group G and $h \in Aut(U)$ show that $(U, h\varepsilon)$ is also universal for G. Conversely, if (U, ε_1) is universal for G show that $\varepsilon_1 = h\varepsilon$ for some $h \in Aut(U)$.
- (5) Find G' if $G = S_3, S_4$, or A_4 .
- (6) Prove the lemma from class:
 - (i) If $G' \leq H \leq G$ show that $H \lhd G$.
 - (ii) Show that if $K \triangleleft G$, then $K' \triangleleft G$.
 - (iii) Suppose $f: G \to H$ is an epimorphism, with ker f = K. Show that H is abelian if and only if $G' \leq K$.
- (7) (a) Find the derived series for S_4 .
- (b) Show that $S'_n = A_n$ if $n \neq 2$. Conclude that S_n is not solvable if $n \geq 5$.
- (8) Show that any finite p-group is solvable.
- (9) If $|G| = p^2 q$ for primes p and q, show that G is solvable.