MTHSC 851 (Abstract Algebra) Dr. Matthew Macauley HW 5 Due Monday Feb. 23, 2009

- (1) (a) Let |G| be finite and $N \triangleleft G$. If $xN \in G/N$ has order a power of p, show that there exists $y \in G$ such that |y| is a power of p and yN = xN.
 - (b) If G/N is abelian and P is a p-Sylow subgroup of G, prove that PN/N is the unique p-Sylow subgroup of G/N.
- (2) Let $H_i \triangleleft G_i$. Prove or give a counterexample.
 - (a) $G_1 \cong G_2, H_1 \cong H_2 \Rightarrow G_1/H_1 \cong G_2/H_2.$
 - (b) $G_1 \cong G_2, G_1/H_1 \cong G_2/H_2 \Rightarrow H_1 \cong H_2.$
 - (c) $H_1 \cong H_2, G_1/H_1 \cong G_2/H_2 \Rightarrow G_1 \cong G_2.$
- (3) Give an example of groups H_i , K_j such that $H_1 \times H_2 \cong K_1 \times K_2$ and no H_i is isomorphic to any K_j .
- (4) Let G be the additive group \mathbb{Q} of rational numbers. Show that G is not the internal direct product of two of its proper subgroups.
- (5) If G is the internal direct product of subgroups G_1 and G_2 , show that $G/G_1 \cong G_2$ and $G/G_2 \cong G_1$.
- (6) (a) Show that $Z(\prod_{\alpha} G_{\alpha}) = \prod_{\alpha} Z(G_{\alpha})$.
 - (b) Show that $(G_1 \times G_2 \times \cdots \times G_n)' = G'_1 \times G'_2 \times \cdots \times G'_n$.

(c) Under what circumstances is $G_1 \times G_2 \times \cdots \times G_n$ solvable?

- (7) If $f: A \to B$ is an equivalence in a category \mathfrak{C} and $g: B \to A$ is a morphism such that $gf = 1_A$ and $fg = 1_B$, show that g is unique.
- (8) (a) Prove that any two universal (initial) objects in a category & are equivalent.
 (b) Prove that any two couniversal (terminal) objects in a category & are equivalent.
- (9) In the category of abelian groups, show that the group $A_1 \times A_2$ together with the homomorphisms

$$\iota_1 \colon A_1 \to A_1 \times A_2, \quad \iota_1(x) = (x, e)$$
$$\iota_2 \colon A_2 \to A_1 \times A_2, \quad \iota_2(x) = (e, x)$$

is a coproduct for $\{A_1, A_2\}$. Why is this not a coproduct in the category of groups?