## MTHSC 851 (Abstract Algebra) Dr. Matthew Macauley HW 6 Due Tuesday March 3nd, 2009

- (1) (a) Prove that ∑<sub>i∈I</sub> A<sub>i</sub> is a coproduct in the category of abelian groups. Specifically, let {A<sub>i</sub> | i ∈ I} be a family of abelian groups, and let ι<sub>i</sub> be the canonical injections, for i ∈ I. If B is an abelian group and {f<sub>i</sub>: A<sub>i</sub> → B | i ∈ I} a family of homomorphisms, prove there is a unique homomorphism f: ∑<sub>i∈I</sub> A<sub>i</sub> → B such that fι<sub>i</sub> = f<sub>i</sub> for all i ∈ I, and this determines ∑<sub>i∈I</sub> A<sub>i</sub> uniquely up to isomorphism.
  - (b) Give an example of how the direct product  $\prod_{i \in I} A_i$  fails to be a coproduct in the category of abelian groups.
- (2) Prove that the free product  $\prod_{i \in I} {}^*G_i$  is a coproduct in the category of groups.
- (3) Let  $A_1, A_2, A$  be objects in a category  $\mathfrak{C}$ , and let  $f_i \in \text{Hom}(A, A_i)$  for i = 1, 2. Suppose that



are pushouts for  $(A, A_1, A_2, f_1, f_2)$ . Prove that B and B' are equivalent.

- (4) Give an example of a group that is solvable but not nilpotent.
- (5) Show that subgroups and homomorphic images of nilpotent groups are nilpotent.
- (6) A pair of homomorphisms  $K \xrightarrow{f} G \xrightarrow{g} H$  is said to be *exact* at G if  $\operatorname{Im}(f) = \ker g$ . A sequence  $1 \to K \xrightarrow{f} G \xrightarrow{g} H \to 1$  is called a *short exact sequence* if it is exact at each of K, G, and H.
  - (a) Show that if  $K \triangleleft G$ ,  $f \colon K \to G$  is the inclusion map and  $g \colon G \to G/K$  is the canonical quotient map, then  $1 \to K \xrightarrow{f} G \xrightarrow{g} G/K \to 1$  is a short exact sequence.
  - (b) Show that  $1 \to K \xrightarrow{f} G \xrightarrow{g} H \to 1$  is short exact if and only if f is 1–1, g is onto, and  $\text{Im}(f) = \ker g$ . Conclude that then K is isomorphic with a normal subgroup of G and that  $G/f(K) \cong H$ .
  - (c) Suppose  $1 \to K \to G \to H \to 1$  is a short exact sequence. Show that G is solvable if and only if both K and H are solvable.
  - (d) Give an example of a short exact sequence  $1 \to K \to G \to H \to 1$  for which K and H are nilpotent but G is not.
- (7) If G is a group and  $x \in G$  define the *inner automorphism*  $f_x$  by setting  $f_x(y) = xyx^{-1}$ , for all  $y \in G$ . Write I(G) for the set of all inner automorphisms of G.
  - (a) Show that  $I(G) \leq \operatorname{Aut}(G)$ .
  - (b) Show that  $I(G) \cong G/Z(G)$ .
  - (c) If I(G) is abelian show that  $G' \leq Z(G)$ . Conclude that G is nilpotent.
  - (d) Compute  $\operatorname{Aut}(S_3)$ .
- (8) Let G be a finite group in which every maximal subgroup is normal.
  - (a) Prove that G is nilpotent. [*Hint*: If not, then take a non-normal Sylow subgroup  $P \leq G$ , and choose a maximal  $M \leq G$  containing  $N_G(P)$ . Now, take  $x \in G \setminus M$  and look at  $xPx^{-1}$ .]
  - (b) Show that every maximal subgroup of G has prime index.
- (9) Let N be a nontrivial normal subgroup of a nilpotent group G. Prove that  $N \cap Z(G) \neq 1$ .