MTHSC 851 (Abstract Algebra) Dr. Matthew Macauley HW 7 Due Thursday March 26th, 2009

- (1) Verify that if $S = \{1\}$ and $\mathbb{N} = \{1, 2, 3, ...\}$, then $(\mathbb{N}, +)$ is a free semigroup on S, with j(1) = 1.
- (2) Prove that if a free semigroup X exists on S, it is unique up to isomorphism.
- (3) If $S = \{a\}$ let $F = \{a^n : n \in \mathbb{Z}\}$ (take $a^0 = 1$), and define $a^m \cdot a^n = a^{m+n}$ and $\phi(a) = a = a^1$. Show that F is a free group on S. Thus a free group on a single "generator" a can be taken to be the infinite cyclic group $\langle a \rangle$.
- (4) (a) Let S be a set. The group with presentation (S, R) where $R = \{[s, t] | s, t \in S\}$ is called the *free abelian* group on S denote it by A(S). Prove that A(S) has the following universal property: if G is any abelian group and $\varphi \colon S \to G$ is any set map, then there is a unique group homomorphism $f \colon A(S) \to G$ such that $f|_S = \varphi$.
 - (b) Deduce that if A is a free abelian group on a set of cardinality n, then

$$A \cong \mathbb{Z} \times \mathbb{Z} \times \dots \times \mathbb{Z} \qquad (n \text{ factors}).$$

- (5) Show that every nonidentity element in a free group F has infinite order.
- (6) Let F be a free group and let N be the subgroup generated by the set $\{x^n \mid x \in F, n \text{ a fixed integer}\}$. Show that $N \triangleleft F$.
- (7) Let (F, ϕ) be a free group on a set S.
 - (a) If $|S| \ge 2$, show that F is not abelian.
 - (b) For any $T \subseteq S$, show that there exists a normal subgroup $N \triangleleft F$ such that $(F/N, \pi \phi|_T)$ is a free group on T.
 - (c) Show that $(\langle \phi(T) \rangle, \phi|_T)$ is a free group on T.
- (8) For a positive integer n, let $\mathfrak{C}_{\leq n}$ be the category of nilpotent groups of class at most n. Prove or disprove that free objects always exist in $\mathfrak{C}_{\leq n}$.
- (9) Let F be a free object on S, and F' a free object on S' in a concrete category \mathfrak{C} . Prove that F and F' are equivalent.