MTHSC 851 (Abstract Algebra) Dr. Matthew Macauley HW 8 Due Thursday April 2nd, 2009

- (1) Prove that there cannot be a nilpotent group N generated by two elements with the property that every nilpotent group generated by two elements is a homomorphic image of N (i.e., free objects do not always exist in the category \mathfrak{C} of nilpotent groups).
- (2) Let G be a group with $X \subseteq G$, and let A be the normal subgroup generated by X, i.e.,

$$A = \bigcap \{ N \lhd G \colon X \subseteq N \} .$$

Let $Y = \{gxg^{-1} \mid x \in X, g \in G\}$. Show that $A = \langle Y \rangle$.

- (3) Show that the Klein 4-group V has presentation $\langle a, b \mid a^2 = b^2 = (ab)^2 = 1 \rangle$.
- (4) Show that the quaternion group $Q_2 = \{\pm 1, \pm i, \pm j, \pm k\}$ has presentation $\langle a, b \mid a^4 = 1, a^2 = b^2, ab = ba^3 \rangle$.
- (5) (a) Determine the group with presentation $\langle a, b \mid a^2 = 1, b^3 = 1, ab = ba \rangle$.
 - (b) If G and H each have more than one element, show that G * H is an infinite group with center $\langle e \rangle$.
 - (c) Determine the group with presentation $\langle a, b \mid a^2 = 1, b^3 = 1 \rangle$.
- (6) Define the generalized quaternion group Q_n by the presentation

$$Q_n = \langle a, b \mid a^{2n} = 1, b^2 = a^n, ab = ba^{-1} \rangle$$
, for $n \ge 1$.

- (a) Show that $|Q_n| = 4n$.
- (b) Show that Q_1 is cyclic and Q_2 is the quaternion group.
- (c) Show that Q_3 is not isomorphic with either the dihedral group D_6 or the alternating group A_4 .
- (7) Let $G = \langle a, b \mid a^4 = b^3 = 1, ab = ba^3 \rangle$. Show that G is cyclic of order 6.
- (8) Consider the Cartesian product $H = \mathbb{Z}_2 \times \mathbb{Z}_n$ (as a *set*). Define a binary operation on H to be

$$(\overline{i},\overline{j})\cdot(\overline{k},\overline{\ell}) = (\overline{i}+\overline{k},(-1)^k\overline{j}+\overline{\ell})$$

- (a) Show that H is a group under this operation, and determine its order.
- (b) Let $G = \langle a, b \mid a^n = 1, b^2 = 1, abab^{-1} = 1 \rangle$. Show that $|G| \le 2n$.
- (c) Show that $H \cong G$.
- (9) If H and K are subgroup of G, with $K \triangleleft G$, $K \cap H = 1$, and KH = G, then G is called a semidirect product (or split extension) of K by H.
 - (a) If $\sigma = (12) \in S_n$, $n \ge 2$, show that S_n is a semidirect product of A_n by $\langle \sigma \rangle$.
 - (b) Show that the dihedral group $D_n = \langle a, b \mid a^n = b^2 = 1, b^{-1}ab = a^{-1} \rangle$ is a semidirect product of $A = \langle a \rangle$ by $B = \langle b \rangle$.
 - (c) Show that the quaternion group Q_2 cannot be expressed as a semidirect product of two non-trivial subgroups.
- (10) Suppose K and H are groups and $\phi: H \to \operatorname{Aut}(K)$ is a homomorphism. Let G be the Cartesian product $K \times H$ as a set, but with binary operation $(x, y)(u, v) = (x \cdot \phi(y)u, yv)$. Show that G is a group; denote it by $G = K \rtimes_{\phi} H$, and call it the *external semidirect* product of K by H relative to ϕ . Show that $K_1 = \{(x, 1): x \in K\} \triangleleft G, H_1 = \{(1, y): y \in H\} \leq G$, and that G is the semidirect product of K_1 by H_1 (as in the previous exercise).