MTHSC 851 (Abstract Algebra)
 Dr. Matthew Macauley
 HW 8
 Due Thursday April 2nd, 2009

(1) Prove that there cannot be a nilpotent group N generated by two elements with the property that every nilpotent group generated by two elements is a homomorphic image of N (i.e., free objects do not always exist in the category \mathfrak{C} of nilpotent groups).
(2) Let G be a group with $X \subseteq G$, and let A be the normal subgroup generated by X, i.e.,

$$
A=\bigcap\{N \triangleleft G: X \subseteq N\}
$$

Let $Y=\left\{g x g^{-1} \mid x \in X, g \in G\right\}$. Show that $A=\langle Y\rangle$.
(3) Show that the Klein 4-group V has presentation $\left\langle a, b \mid a^{2}=b^{2}=(a b)^{2}=1\right\rangle$.
(4) Show that the quaternion group $Q_{2}=\{ \pm 1, \pm i, \pm j, \pm k\}$ has presentation $\langle a, b| a^{4}=$ $\left.1, a^{2}=b^{2}, a b=b a^{3}\right\rangle$
(5) (a) Determine the group with presentation $\left\langle a, b \mid a^{2}=1, b^{3}=1, a b=b a\right\rangle$.
(b) If G and H each have more than one element, show that $G * H$ is an infinite group with center $\langle e\rangle$.
(c) Determine the group with presentation $\left\langle a, b \mid a^{2}=1, b^{3}=1\right\rangle$.
(6) Define the generalized quaternion group Q_{n} by the presentation

$$
Q_{n}=\left\langle a, b \mid a^{2 n}=1, b^{2}=a^{n}, a b=b a^{-1}\right\rangle, \quad \text { for } n \geq 1
$$

(a) Show that $\left|Q_{n}\right|=4 n$.
(b) Show that Q_{1} is cyclic and Q_{2} is the quaternion group.
(c) Show that Q_{3} is not isomorphic with either the dihedral group D_{6} or the alternating group A_{4}.
(7) Let $G=\left\langle a, b \mid a^{4}=b^{3}=1, a b=b a^{3}\right\rangle$. Show that G is cyclic of order 6 .
(8) Consider the Cartesian product $H=\mathbb{Z}_{2} \times \mathbb{Z}_{n}$ (as a set). Define a binary operation on H to be

$$
(\bar{i}, \bar{j}) \cdot(\bar{k}, \bar{\ell})=\left(\bar{i}+\bar{k},(-1)^{k} \bar{j}+\bar{\ell}\right)
$$

(a) Show that H is a group under this operation, and determine its order.
(b) Let $G=\left\langle a, b \mid a^{n}=1, b^{2}=1, a b a b^{-1}=1\right\rangle$. Show that $|G| \leq 2 n$.
(c) Show that $H \cong G$.
(9) If H and K are subgroup of G, with $K \triangleleft G, K \cap H=1$, and $K H=G$, then G is called a semidirect product (or split extension) of K by H.
(a) If $\sigma=(12) \in S_{n}, n \geq 2$, show that S_{n} is a semidirect product of A_{n} by $\langle\sigma\rangle$.
(b) Show that the dihedral group $D_{n}=\left\langle a, b \mid a^{n}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle$ is a semidirect product of $A=\langle a\rangle$ by $B=\langle b\rangle$.
(c) Show that the quaternion group Q_{2} cannot be expressed as a semidirect product of two non-trivial subgroups.
(10) Suppose K and H are groups and $\phi: H \rightarrow \operatorname{Aut}(K)$ is a homomorphism. Let G be the Cartesian product $K \times H$ as a set, but with binary operation $(x, y)(u, v)=(x \cdot \phi(y) u, y v)$. Show that G is a group; denote it by $G=K \rtimes_{\phi} H$, and call it the external semidirect product of K by H relative to ϕ. Show that $K_{1}=\{(x, 1): x \in K\} \triangleleft G, H_{1}=\{(1, y): y \in$ $H\} \leq G$, and that G is the semidirect product of K_{1} by H_{1} (as in the previous exercise).

