MTHSC 851 (Abstract Algebra)
 Dr. Matthew Macauley HW 9

Due Tuesday April 14th, 2009
(1) Give an example of a ring with exactly 851 ideals.
(2) If F is a field, show that $M_{n}(F)$ is a simple ring.
(3) Let R be a ring with unity and $x \in R$ any non-unit. Use Zorn's lemma to prove that x is contained in a maximal ideal.
(4) A local ring is a commutative ring with identity which has a unique maximal ideal. Prove that R is local if and only if the non-units of R form an ideal.
(5) Let R be a finite ring.
(a) Prove that there are positive integers m and n with $m>n$ such that $x^{m}=x^{n}$ for every $x \in R$. (Hint: If $|R|=n$, then consider the ring $S=R \times \cdots R$, with n factors.)
(b) Give a direct proof (i.e., without appealing to part (c)) that if R is an integral domain, then it is a field.
(c) Suppose that R has identity. Prove that if $x \in R$ is not a zero divisor, then it is a unit.
(6) (a) An element a of a ring R is called nilpotent if $a^{n}=0$ for some positive integer n. Show that the set of nilpotent elements in a commutative ring R is an ideal of R.
(b) If $u \in R$ is a unit and $a \in R$ nilpotent, show that $u+a$ is a unit.
(7) Let R be a commutative ring.
(a) Show that an ideal P in R is prime if and only if R / P is an integral domain.
(b) If additionally, R has 1 , show that every maximal ideal is prime.
(c) Give an example of an integral domain R and a nonzero prime ideal P that is not maximal.
(8) (a) If R is a field, show that R itself is a field of fractions for R.
(b) Show that \mathbb{Q} is a field of fractions for \mathbb{Z} and for $2 \mathbb{Z}$.
(9) Let R be any commutative ring and S a subset of $R \backslash\{0\}$ that is a semigroup under multiplication, and contains no zero devisors. Let X be the Cartesian product $R \times S$ and define a relation \sim on X where $(a, b) \sim(c, d)$ if $a d=b c$.
(a) Show that \sim is an equivalence relation on X.
(b) Denote the equivalence class of (a, b) by a / b and the set of equivalence classes by R_{S} (called the localization of R at S). Show that R_{S} is a commutative ring with 1 .
(c) If $a \in S$ show that $\{r a / a: r \in R\}$ is a subring of R_{S} and that $r \mapsto r a / a$ is a monomorphism, so that R can be identified with a subring with R_{S}.
(d) Show that every $s \in S$ is a unit in R_{S}.
(e) Give a "universal" definition for the ring R_{S} and show that R_{S} is unique up to isomorphism.

