MTHSC 851 (Abstract Algebra) Dr. Matthew Macauley HW 10 Due Friday April 24th, 2009

- (1) Let R and S be commutative rings, and let $f: R \to S$ be a ring homomorphism.
 - (a) If f is surjective and I is an ideal of R, show that f(I) is an ideal of S.
 - (b) Show that part (a) is not true in general when f is not surjective.
 - (c) Show that if f is surjective and R is a field, then S is a field as well.
- (2) Let p be a fixed prime number, and consider the ring

$$R = \{ \frac{a}{b} \colon a, b \in \mathbb{Z}, \ (a, b) = 1, \ p \nmid b \}$$

- with the usual operations of addition and multiplication of rational numbers.
- (a) Determine the group of units of R.
- (b) Prove that the principal ideal (p) = pR is a maximal ideal of R, and in fact the only maximal ideal of R.
- (3) Suppose R is an integral domain and $P \subseteq R$ is a prime ideal.
 - (a) Show that both P and $R \setminus P$ are multiplicative semigroups.
 - (b) If $S = R \setminus P$ show that $U(R_S) = R_S \setminus R_S P$. Conclude that $R_S P$ is the unique maximal ideal in R_S .
- (4) (a) How many roots does $x^3 x$ have in the ring $\mathbb{Z}/6\mathbb{Z}$?
 - (b) What condition must hold for a commutative ring R so that the number of roots of a polynomial in R[x] cannot exceed its degree?
 - (c) Does your condition from (b) still hold if R is not commutative? Prove or give a counterexample.
- (5) Let p be prime, and $k \ge 1$. Find U(R) if $R = \mathbb{Z}_{p^k}[x]$. Prove all your claims.
- (6) If R is a commutative ring with 1, $f(x) \in R[x]$, and $a \in R$, then we may substitute a for x and obtain $f(a) \in R$. Thus f(x) determines a polynomial function $f: R \to R$.
 - (a) If R is finite show that there must exist polynomials f(x) and g(x) in R[x], with $f(x) \neq g(x)$, such that the associated polynomial functions f and g are identical, i.e., f(a) = g(a) for all $a \in R$.
 - (b) Find explicit examples of the phenomenon in (a) when $R = \mathbb{Z}_n$.
 - (c) If R is an infinite integral domain show that the mapping $f(x) \mapsto f$ assign to each polynomial in R[x] its corresponding polynomial function is 1–1.
- (7) (a) Prove that the ideal $I = \langle 2, x \rangle$ in $\mathbb{Z}[x]$ is not a principal ideal.
- (b) What is the quotient ring $\mathbb{Z}[x]/\langle 2, x \rangle$ isomorphic to?
- (8) (a) Suppose that R is a commutative ring with identity, let $a_1, \ldots, a_n \in R$, and denote by I the ideal in the polynomial ring $R[x_1, \cdots, x_n]$ generated by the polynomials $x_1 a_1, \ldots, x_n a_n$. Formulate and prove necessary and sufficient conditions on R that will ensure that I is a maximal ideal.
 - (b) What are the maximal ideals of $\mathbb{Z}[x]$? Of $\mathbb{Z}[x, y]$? (No proofs necessary)?