MTHSC 851 (Abstract Algebra)
 Dr. Matthew Macauley
 HW 10
 Due Friday April 24th, 2009

(1) Let R and S be commutative rings, and let $f: R \rightarrow S$ be a ring homomorphism.
(a) If f is surjective and I is an ideal of R, show that $f(I)$ is an ideal of S.
(b) Show that part (a) is not true in general when f is not surjective.
(c) Show that if f is surjective and R is a field, then S is a field as well.
(2) Let p be a fixed prime number, and consider the ring

$$
R=\left\{\frac{a}{b}: a, b \in \mathbb{Z},(a, b)=1, p \nmid b\right\}
$$

with the usual operations of addition and multiplication of rational numbers.
(a) Determine the group of units of R.
(b) Prove that the principal ideal $(p)=p R$ is a maximal ideal of R, and in fact the only maximal ideal of R.
(3) Suppose R is an integral domain and $P \subseteq R$ is a prime ideal.
(a) Show that both P and $R \backslash P$ are multiplicative semigroups.
(b) If $S=R \backslash P$ show that $U\left(R_{S}\right)=R_{S} \backslash R_{S} P$. Conclude that $R_{S} P$ is the unique maximal ideal in R_{S}.
(4) (a) How many roots does $x^{3}-x$ have in the ring $\mathbb{Z} / 6 \mathbb{Z}$?
(b) What condition must hold for a commutative ring R so that the number of roots of a polynomial in $R[x]$ cannot exceed its degree?
(c) Does your condition from (b) still hold if R is not commutative? Prove or give a counterexample.
(5) Let p be prime, and $k \geq 1$. Find $U(R)$ if $R=\mathbb{Z}_{p^{k}}[x]$. Prove all your claims.
(6) If R is a commutative ring with $1, f(x) \in R[x]$, and $a \in R$, then we may substitute a for x and obtain $f(a) \in R$. Thus $f(x)$ determines a polynomial function $f: R \rightarrow R$.
(a) If R is finite show that there must exist polynomials $f(x)$ and $g(x)$ in $R[x]$, with $f(x) \neq g(x)$, such that the associated polynomial functions f and g are identical, i.e., $f(a)=g(a)$ for all $a \in R$.
(b) Find explicit examples of the phenomenon in (a) when $R=\mathbb{Z}_{n}$.
(c) If R is an infinite integral domain show that the mapping $f(x) \mapsto f$ assiging to each polynomial in $R[x]$ its corresponding polynomial function is $1-1$.
(7) (a) Prove that the ideal $I=\langle 2, x\rangle$ in $\mathbb{Z}[x]$ is not a principal ideal.
(b) What is the quotient ring $\mathbb{Z}[x] /\langle 2, x\rangle$ isomorphic to?
(8) (a) Suppose that R is a commutative ring with identity, let $a_{1}, \ldots, a_{n} \in R$, and denote by I the ideal in the polynomial ring $R\left[x_{1}, \cdots, x_{n}\right]$ generated by the polynomials $x_{1}-a_{1}, \ldots, x_{n}-a_{n}$. Formulate and prove necessary and sufficient conditions on R that will ensure that I is a maximal ideal.
(b) What are the maximal ideals of $\mathbb{Z}[x]$? Of $\mathbb{Z}[x, y]$? (No proofs necessary)?

